欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(Ⅱ)若從袋子里每次摸出一個球.看清顏色后放回.連續(xù)摸3次.求得分的概率分布列及數(shù)學期望. 查看更多

 

題目列表(包括答案和解析)

現(xiàn)有一個放有9個球的袋子,其中紅球4個,白球3個,黃球2個,并且這些球除顏色外完全相同.
(Ⅰ) 現(xiàn)從袋子里任意摸出3個球,求其中有兩球同色的概率;
(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有兩球同色為止,求摸球次數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

現(xiàn)有一個放有9個球的袋子,其中紅球4個,白球3個,黃球2個,并且這些球除顏色外完全相同.
(Ⅰ) 現(xiàn)從袋子里任意摸出3個球,求其中有兩球同色的概率;
(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有兩球同色為止,求摸球次數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

現(xiàn)有一個放有9個球的袋子,其中紅球4個,白球3個,黃球2個,并且這些球除顏色外完全相同.
(Ⅰ) 現(xiàn)從袋子里任意摸出3個球,求其中有兩球同色的概率;
(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有兩球同色為止,求摸球次數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

一袋子中有大小相同的2個紅球和3個黑球,從袋子里隨機取球取到每個球的可能性是相同的,設取到一個紅球得2分,取到一個黑球得1分.

(Ⅰ)若從袋子里一次隨機取出3個球,求得4分的概率;

(Ⅱ)若從袋子里每次摸出一個球,看清顏色后放回,連續(xù)摸2次,求得分的概率分布列及數(shù)學期望.

查看答案和解析>>

一袋子中有大小相同的2個紅球和3個黑球,從袋子里隨機取球,取到每個球的可能性是相同的,設取到一個紅球得2分,取到一個黑球得1分.
(Ⅰ)若從袋子里一次隨機取出3個球,求得4分的概率;
(Ⅱ)若從袋子里每次摸出一個球,看清顏色后放回,連續(xù)摸3次,求得分ξ的概率分布列及數(shù)學期望.

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.800    14.    15.625    16.②④

三、解答題(本大題共6小題,滿分74分)

17.解

   (Ⅰ)由題意知

……………………3分

……………………4分

的夾角

……………………6分

(Ⅱ)

……………………9分

有最小值。

的最小值是……………………12分

18.解:

(Ⅰ)設“一次取出3個球得4分”的事件記為A,它表示取出的球中有1個紅球和2個黑球的情況

……………………4分

(Ⅱ)由題意,的可能取值為3、4、5、6。因為是有放回地取球,所以每次取到紅球的概率為……………………6分

的分布列為

3

4

5

6

P

……………………10分

  • <fieldset id="a0ws4"><dd id="a0ws4"></dd></fieldset>
      • 19.解:

        連接BD交AC于O,則BD⊥AC,

        連接A1O

        在△AA1O中,AA1=2,AO=1,

        ∠A1AO=60°

        ∴A1O2=AA12+AO2-2AA1?Aocos60°=3

        ∴AO2+A1O2=A12

        ∴A1O⊥AO,由于平面AA1C1C

        平面ABCD,

        所以A1O⊥底面ABCD

        ∴以OB、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

        ……………………2分

        (Ⅰ)由于

        ∴BD⊥AA1……………………4分

          (Ⅱ)由于OB⊥平面AA1C1C

        ∴平面AA1C1C的法向量

        ⊥平面AA1D

        得到……………………6分

        所以二面角D―A1A―C的平面角的余弦值是……………………8分

        (Ⅲ)假設在直線CC1上存在點P,使BP//平面DA1C1

        ……………………9分

        得到……………………10分

        又因為平面DA1C1

        ?

        即點P在C1C的延長線上且使C1C=CP……………………12分

        法二:在A1作A1O⊥AC于點O,由于平面AA1C­1C⊥平面

        ABCD,由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,

        又底面為菱形,所以AC⊥BD

        <menu id="a0ws4"><center id="a0ws4"></center></menu>
        • <tr id="a0ws4"></tr>

          ……………………4分

          (Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

          ∴AO=AA1?cos60°=1

          所以O是AC的中點,由于底面ABCD為菱形,所以

          O也是BD中點

          由(Ⅰ)可知DO⊥平面AA1C

          過O作OE⊥AA1于E點,連接OE,則AA1⊥DE

          則∠DEO為二面角D―AA1―C的平面角

          ……………………6分

          在菱形ABCD中,AB=2,∠ABC=60°

          ∴AC=AB=BC=2

          ∴AO=1,DO=

          在Rt△AEO中,OE=OA?sin∠EAO=

          DE=

          ∴cos∠DEO=

          ∴二面角D―A1A―C的平面角的余弦值是……………………8分

          (Ⅲ)存在這樣的點P

          連接B1C,因為A1B1ABDC

          ∴四邊形A1B1CD為平行四邊形。

          ∴A1D//B1C

          在C1C的延長線上取點P,使C1C=CP,連接BP……………………10分

          因B­1­BCC1,……………………12分

          ∴BB1CP

          ∴四邊形BB1CP為平行四邊形

          則BP//B1C

          ∴BP//A1D

          ∴BP//平面DA1C1

          20.解:

          (Ⅰ)

          ……………………2分

          是增函數(shù)

          是減函數(shù)……………………4分

          ……………………6分

          (Ⅲ)(i)當時,,由(Ⅰ)知上是增函數(shù),在上是減函數(shù)

          ……………………7分

          又當時,所以的圖象在上有公共點,等價于…………8分

          解得…………………9分

          (ii)當時,上是增函數(shù),

          所以原問題等價于

          ∴無解………………11分