欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

聽下面一段對話.回答第11-12題. W: Hello. This is the police station. M: Help! Help! Please help me. W: Yes, sir. Please keep calm and tell me what is happening. M: My car has broken down on the way. l have a lady passenger, and she's in danger. W: Now relax, sir. Tell me exactly where you are. M: I'm... I'm on No. 5 Freeway. W: Okay. What's your name, sir, and your passenger's? M: It's... it's Bob, and I have no idea about the woman. W: Okay. Please keep calm and wait a moment. M: Okay. Please hurry. Don't be too late! 查看更多

 

題目列表(包括答案和解析)

閱讀理解題:一次數學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數變成了4次,用現有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現方程中x2-x是整體出現的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數,這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現在,請你用換元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

27、閱讀下面一段材料,回答問題.
我國宋朝數學家楊輝在他的著作《詳解九章算法》中提出右下表,此表揭示了(a+b)n(n為非負整數)展開式的各項系數的規(guī)律,例如:
(a+b)0=1,它只有一項,系數為1;
(a+b)1=a+b,它有兩項,系數分別為1,1;
(a+b)2=a2+2ab+b2,它有三項,系數分別為1,2,1;
(a+b)3=a3+3a2b+3ab2+b3,它有四項,系數分別為1,3,3,1;

根據以上規(guī)律,(a+b)4展開式共有五項,系數分別為
1
,
4
6
,
4
1

計算:(a+b)4

查看答案和解析>>

閱讀理解題:一次數學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數變成了4次,用現有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現方程中x2-x是整體出現的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數,這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現在,請你用換元法解下列分式方程

查看答案和解析>>

閱讀下面一段材料,回答問題.
我國宋朝數學家楊輝在他的著作《詳解九章算法》中提出下表,此表揭示了(a+b)n(n為非負整數)展開式的各項系數的規(guī)律,例如:
(a+b)0=1,它只有一項,系數為1;
(a+b)1=a+b,它有兩項,系數分別為1,1;
(a+b)2=a2+2ab+b2,它有三項,系數分別為1,2,1;
(a+b)3=a3+3a2b+3ab2+b3,它有四項,系數分別為1,3,3,1;

根據以上規(guī)律,(a+b)4展開式共有五項,系數分別為_,_,_,__
計算:(a+b)4

查看答案和解析>>

閱讀理解題:一次數學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數變成了4次,用現有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現方程中x2-x是整體出現的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數,這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現在,請你用換元法解下列分式方程

查看答案和解析>>


同步練習冊答案