題目列表(包括答案和解析)
已知數(shù)列
是首項為
的等比數(shù)列,且滿足![]()
.
(1) 求常數(shù)
的值和數(shù)列
的通項公式;
(2) 若抽去數(shù)列
中的第一項、第四項、第七項、……、第
項、……,余下的項按原來的順序組成一個新的數(shù)列
,試寫出數(shù)列
的通項公式;
(3) 在(2)的條件下,設數(shù)列
的前
項和為
.是否存在正整數(shù)
,使得
?若存在,試求所有滿足條件的正整數(shù)
的值;若不存在,請說明理由.
【解析】第一問中解:由
得
,,
又因為存在常數(shù)p使得數(shù)列
為等比數(shù)列,
則
即
,所以p=1
故數(shù)列
為首項是2,公比為2的等比數(shù)列,即
.
此時
也滿足,則所求常數(shù)
的值為1且![]()
第二問中,解:由等比數(shù)列的性質得:
(i)當
時,
;
(ii) 當
時,
,
所以![]()
第三問假設存在正整數(shù)n滿足條件,則
,
則(i)當
時,
![]()
,
已知數(shù)列
滿足
(I)求數(shù)列
的通項公式;
(II)若數(shù)列
中
,前
項和為
,且
證明:
![]()
【解析】第一問中,利用
,![]()
∴數(shù)列{
}是以首項a1+1,公比為2的等比數(shù)列,即
![]()
第二問中,
![]()
進一步得到得
即![]()
即
是等差數(shù)列.
然后結合公式求解。
解:(I) 解法二、
,![]()
∴數(shù)列{
}是以首項a1+1,公比為2的等比數(shù)列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差數(shù)列.
![]()
![]()
![]()
![]()
| |||||||||||||||
已知數(shù)列
中,
,
,數(shù)列
中,
,且點
在直線
上。
(1)求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
;
(3)若
,求數(shù)列
的前
項和
;
【解析】第一問中利用數(shù)列的遞推關系式![]()
,因此得到數(shù)列
的通項公式;
第二問中,
在
即為:![]()
即數(shù)列
是以
的等差數(shù)列
得到其前n項和。
第三問中,
又
![]()
,利用錯位相減法得到。
解:(1)![]()
即數(shù)列
是以
為首項,2為公比的等比數(shù)列
![]()
……4分
(2)
在
即為:![]()
即數(shù)列
是以
的等差數(shù)列
![]()
……8分
(3)
又
![]()
![]()
①
②
①- ②得到
![]()
已知數(shù)列
的前n項和
,數(shù)列
有
,
(1)求
的通項;
(2)若
,求數(shù)列
的前n項和
.
【解析】第一問中,利用當n=1時,![]()
當
時,![]()
得到通項公式
第二問中,∵
∴
∴數(shù)列
是以2為首項,2為公比的等比數(shù)列,利用錯位相減法得到。
解:(1)當n=1時,
……………………1分
當
時,
……4分
又![]()
∴
……………………5分
(2)∵
∴
∴
……………………7分
又∵
,
∴ ![]()
∴數(shù)列
是以2為首項,2為公比的等比數(shù)列,
∴
……………………9分
∴
∴
①
②
①-②得:![]()
∴![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com