題目列表(包括答案和解析)
已知數(shù)列
是公差不為零的等差數(shù)列,
,且
、
、
成等比數(shù)列。
⑴求數(shù)列
的通項公式;
⑵設(shè)
,求數(shù)列
的前
項和
。
【解析】第一問中利用等差數(shù)列
的首項為
,公差為d,則依題意有:
![]()
第二問中,利用第一問的結(jié)論得到數(shù)列的通項公式,
,利用裂項求和的思想解決即可。
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)
時,求證:
;
(Ⅱ)若
邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,![]()
![]()
又因為
,
………………2分
又
,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得![]()
由此知道a=2, 設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當(dāng)
時,底面ABCD為正方形,![]()
![]()
又因為
,
又![]()
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2,
設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
已知點
為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點![]()
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設(shè)
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為![]()
第二問中,設(shè)點
的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得 ![]()
∵
,∴![]()
確定結(jié)論直線
與曲線
總有兩個公共點.
然后設(shè)點
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設(shè)
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為
. ………………2分
(2)設(shè)點
的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得
,……5分
∵
,∴
,
∴直線
與曲線
總有兩個公共點.(也可根據(jù)點M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當(dāng)
時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點
,使得
總能被
軸平分
已知
是等差數(shù)列,其前n項和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項公式;
(Ⅱ)記
,
,證明
(
).
【解析】(1)設(shè)等差數(shù)列
的公差為d,等比數(shù)列
的公比為q.
由
,得
,
,
.
由條件,得方程組
,解得![]()
所以
,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時,
,
,故等式成立.
② 假設(shè)當(dāng)n=k時等式成立,即
,則當(dāng)n=k+1時,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1時等式也成立
由①和②,可知對任意
,
成立.
| (c×2-bx+a) |
| x2 |
| 1 |
| x |
| b |
| x |
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| b |
| (x+a) |
| (x+c) |
| (x+d) |
| bx |
| (ax-1) |
| (cx-1) |
| (dx-1) |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com