題目列表(包括答案和解析)
解關(guān)于
的不等式:
![]()
【解析】解:當(dāng)
時,原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image004.png">,即
(2分)
當(dāng)
時,原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image007.png">
(5分) 若
時,
的解為
(7分)
若
時,
的解為
(9分) 若
時,
無解(10分) 若
時,
的解為
(12分綜上所述
當(dāng)
時,原不等式的解為![]()
當(dāng)
時,原不等式的解為![]()
當(dāng)
時,原不等式的解為![]()
當(dāng)
時,原不等式的解為![]()
當(dāng)
時,原不等式的解為: ![]()
-1-
| ||||||
| 4 |
-1-
| ||||||
| 4 |
甲說:“只須不等式左邊的最小值不小于右邊的最大值”.
乙說:“把不等式變形為左邊含變量
的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說:“把不等式兩邊看成關(guān)于
的函數(shù),作出函數(shù)圖像”.
參考上述解題思路,你認(rèn)為他們所討論的問題的正確結(jié)論,即
的取值范圍是 .
三個同學(xué)對問題“關(guān)于
的不等式
+25+|
-5
|≥
在[1,12]上恒成立,求實數(shù)
的取值范圍”提出各自的解題思路.
甲說:“只須不等式左邊的最小值不小于右邊的最大值”.
乙說:“把不等式變形為左邊含變量
的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說:“把不等式兩邊看成關(guān)于
的函數(shù),作出函數(shù)圖像”.
參考上述解題思路,你認(rèn)為他們所討論的問題的正確結(jié)論,即
的取值范圍是
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com