題目列表(包括答案和解析)
已知函數(shù) ![]()
R).
(Ⅰ)若
,求曲線
在點(diǎn)
處的的切線方程;
(Ⅱ)若
對(duì)任意 ![]()
恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問(wèn)中,利用當(dāng)
時(shí),
.
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:![]()
第二問(wèn)中,由題意得,
即
即可。
Ⅰ)當(dāng)
時(shí),
.
,
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以
恒成立,
故
在
上單調(diào)遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)
時(shí),
在
上恒成立,
故
在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)
時(shí),令
,對(duì)稱(chēng)軸
,
則
在
上單調(diào)遞增,又
① 當(dāng)
,即
時(shí),
在
上恒成立,
所以
在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)
時(shí),
,
不合題意,舍去 14分
綜上所述:
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿(mǎn)足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
(本小題滿(mǎn)分12分)
閱讀下面內(nèi)容,思考后做兩道小題。
在一節(jié)數(shù)學(xué)課上,老師給出一道題,讓同學(xué)們先解,題目是這樣的:
已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。
題目給出后,同學(xué)們馬上投入緊張的解答中,結(jié)果很快出來(lái)了,大家解出的結(jié)果有很多個(gè),下面是其中甲、乙兩個(gè)同學(xué)的解法:
甲同學(xué)的解法:由f(1)=k+b,f(-1)=-k+b得![]()
①+②得:0≤2b≤4,即0≤b≤2 ③
② ×(-1)+①得:-1≤k-b≤1 ④
④+②得:0≤2k≤4 ⑤
③+⑤得:0≤2k+b≤6。
又∵f(2)=2k+b
∴0≤f(2)≤6,0≤Z≤6
乙同學(xué)的解法是:由f(1)=k+b,f(-1)=-k+b得![]()
①+②得:0≤2b≤4,即:0≤b≤2 ③
①-②得:2≤2k≤2,即:1≤k≤1
∴k=1,
∵f(2)=2k+b=1+b
由③得:1≤f(2)≤3
∴:1≤Z≤3
(Ⅰ)如果課堂上老師讓你對(duì)甲、乙兩同學(xué)的解法給以評(píng)價(jià),你如何評(píng)價(jià)?
(Ⅱ)請(qǐng)你利用線性規(guī)劃方面的知識(shí),再寫(xiě)出一種解法。
| 1 |
| 10 |
| 1 |
| 15 |
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com