題目列表(包括答案和解析)
函數(shù)f(x)=cos2x+sinxcosx的最大值是( )
A.2 B.
C.
D.![]()
[答案] C
[解析]
已知點(diǎn)A(7,1),B(1,4),若直線y=ax與線段AB交于點(diǎn)C,且
=2
,則實(shí)數(shù)a=________.
[答案] 1
[解析] 設(shè)C(x0,ax0),則
=(x0-7,ax0-1),
=(1-x0,4-ax0),
∵
=2
,∴
,解之得
.
設(shè)S n是公差為d(d≠0)的無窮等差數(shù)列{a n}的前n項(xiàng)和,則下列命題錯誤的是
A.若d<0,則數(shù)列{S n}有最大項(xiàng)
B.若數(shù)列{S n}有最大項(xiàng),則d<0
C.若數(shù)列{S n}是遞增數(shù)列,則對任意的n
N*,均有S n>0
D.若對任意的n
N*,均有S n>0,則數(shù)列{S n}是遞增數(shù)列
【解析】選項(xiàng)C顯然是錯的,舉出反例:—1,0,1,2,3,….滿足數(shù)列{S n}是遞增數(shù)列,但是S n>0不成立.
【答案】C
解析:由題意知
當(dāng)-2≤x≤1時,f(x)=x-2,
當(dāng)1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數(shù),
∴f(x)的最大值為f(2)=23-2=6.
答案:C
解析:由正視圖、側(cè)視圖可知,此幾何體的體積最小時,底層有5個小正方體,上面有2個小正方體,共7個小正方體;體積最大時,底層有9個小正方體,上面有2個小正方體,共11個小正方體,故這個幾何體的最大體積與最小體積的差是4.
答案:C
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com