題目列表(包括答案和解析)
解關(guān)于x的不等式
>1(a>0).
解參數(shù)不等式時對于參數(shù)的討論,特別注意不能隨便去分母.
解不等式(x2+x+1)(x+1)3(x-2)2(3-x)>0.
解高次不等式時將不等式一邊分解為若干個一次因式的積,且x的系數(shù)為正.
設(shè)A={x||x-1|<2},B={x|
>0},則A∩B等于
A.{x|-1<x<3} B.{x|x<0或x>2}
C.{x|-1<x<0} D.{x|-1<x<0或2<x<3}
本題考查含絕對值不等式、分式不等式的解法及集合的運算.在進行集合運算時,把解集標(biāo)在數(shù)軸上,借助圖形可直觀求解.
已知數(shù)列
是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列
的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當(dāng)n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當(dāng)n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時,數(shù)列
中的
成等比數(shù)列
已知函數(shù)
=
.
(Ⅰ)當(dāng)
時,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當(dāng)
時,
=
,
當(dāng)
≤2時,由
≥3得
,解得
≤1;
當(dāng)2<
<3時,
≥3,無解;
當(dāng)
≥3時,由
≥3得
≥3,解得
≥8,
∴
≥3的解集為{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
當(dāng)
∈[1,2]時,
=
=2,
∴
,有條件得
且
,即
,
故滿足條件的
的取值范圍為[-3,0]
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com