題目列表(包括答案和解析)
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問(wèn)中利用導(dǎo)數(shù)在在
處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。
第二問(wèn)中,利用存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
![]()
(2)不等式
,即
,即
.
轉(zhuǎn)化為存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
設(shè)
,則.![]()
設(shè)
,則
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有
.
故
在區(qū)間
上是減函數(shù)。又![]()
故存在
,使得
.
當(dāng)
時(shí),有
,當(dāng)
時(shí),有
.
從而
在區(qū)間
上遞增,在區(qū)間
上遞減.
又
[來(lái)源:]
![]()
所以當(dāng)
時(shí),恒有
;當(dāng)
時(shí),恒有![]()
;
故使命題成立的正整數(shù)m的最大值為5
已知函數(shù)![]()
(Ⅰ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)令g(x)= f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由;
(Ⅲ)當(dāng)x∈(0,e]時(shí),證明:![]()
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn)中利用函數(shù)f(x)在[1,2]上是減函數(shù),的導(dǎo)函數(shù)恒小于等于零,然后分離參數(shù)求解得到a的取值范圍。第二問(wèn)中,
假設(shè)存在實(shí)數(shù)a,使
有最小值3,利用
,對(duì)a分類討論,進(jìn)行求解得到a的值。
第三問(wèn)中,![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120293445381201_ST.files/image006.png">,這樣利用單調(diào)性證明得到不等式成立。
解:(Ⅰ) ![]()
(Ⅱ) ![]()
(Ⅲ)見解析
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com