題目列表(包括答案和解析)
設(shè)
,
.
(1)當(dāng)
時,求曲線
在
處的切線方程;
(2)如果存在
,使得
成立,求滿足上述條件的最大整數(shù)
;
(3)如果對任意的
,都有
成立,求實數(shù)
的取值范圍.
【解析】(1)求出切點(diǎn)坐標(biāo)和切線斜率,寫出切線方程;(2)存在
,
轉(zhuǎn)化
解決;(3)任意的
,都有
成立即
恒成立,等價于
恒成立
解析:設(shè)圓錐母線長為R,底面圓的半徑為r,則r=Rsin
.又底面周長l=2πr
=Rα,即2πRsin
=Rα,∴α=2πsin
.
∵
<θ<
,∴
<sin
<
,∴π<α<
π.
答案:D
假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)y(萬元)有如下統(tǒng)計資料:
| x | 2 | 3 | 4 | 5 | 6 |
| y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知,y對x呈線性相關(guān)關(guān)系.試求:
(1)線性回歸方程;
(2)估計使用年限為10年時,維修費(fèi)用約是多少?思路分析:本題考查線性回歸方程的求法和利用線性回歸方程求兩變量間的關(guān)系.
解:(1)
| i | 1 | 2 | 3 | 4 | 5 |
| xi | 2 | 3 | 4 | 5 | 6 |
| yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
| xiyi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
|
| |||||
b=
=1.23,
a=
-b
=5-1.23×4=0.08.
所以,回歸直線方程為
=1.23x+0.08.
(2)當(dāng)x=10時,
=1.23×10+0.08=12.38(萬元),
即估計使用10年時維修費(fèi)約為12.38萬元.
如下圖,等腰直角三角形ABC中,∠A=90°,BC=
,DA⊥AC,DA⊥AB,若DA=1,且E為DA的中點(diǎn).求異面直線BE與CD所成角的余弦值.
![]()
[分析] 根據(jù)異面直線所成角的定義,我們可以選擇適當(dāng)?shù)狞c(diǎn),分別引BE與DC的平行線,換句話說,平移BE(或CD).設(shè)想平移CD,沿著DA的方向,使D移向E,則C移向AC的中點(diǎn)F,這樣BE與CD所成的角即為∠BEF或其補(bǔ)角,解△EFB即可獲解.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com