欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1 組合數(shù)的性質(zhì)1:. 一般地.從n個(gè)不同元素中取出個(gè)元素后.剩下個(gè)元素.因?yàn)閺膎個(gè)不同元素中取出m個(gè)元素的每一個(gè)組合.與剩下的n - m個(gè)元素的每一個(gè)組合一一對(duì)應(yīng).所以從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).等于從這n個(gè)元素中取出n - m個(gè)元素的組合數(shù).即:.在這里.主要體現(xiàn):“取法 與“剩法 是“一一對(duì)應(yīng) 的思想 證明:∵ 又 .∴ 說(shuō)明:①規(guī)定:, ②等式特點(diǎn):等式兩邊下標(biāo)同.上標(biāo)之和等于下標(biāo), ③此性質(zhì)作用:當(dāng)時(shí).計(jì)算可變?yōu)橛?jì)算.能夠使運(yùn)算簡(jiǎn)化. 例如===2002, ④或.2.組合數(shù)的性質(zhì)2:=+. 一般地.從這n+1個(gè)不同元素中取出m個(gè)元素的組合數(shù)是.這些組合可以分為兩類:一類含有元素.一類不含有.含有的組合是從這n個(gè)元素中取出m -1個(gè)元素與組成的.共有個(gè),不含有的組合是從這n個(gè)元素中取出m個(gè)元素組成的.共有個(gè).根據(jù)分類計(jì)數(shù)原理.可以得到組合數(shù)的另一個(gè)性質(zhì).在這里.主要體現(xiàn)從特殊到一般的歸納思想.“含與不含其元素 的分類思想. 證明: ∴=+. 說(shuō)明:①公式特征:下標(biāo)相同而上標(biāo)差1的兩個(gè)組合數(shù)之和.等于下標(biāo)比原下標(biāo)多1而上標(biāo)與大的相同的一個(gè)組合數(shù), ②此性質(zhì)的作用:恒等變形.簡(jiǎn)化運(yùn)算 查看更多

 

題目列表(包括答案和解析)

楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖所示是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為
23
,求n的值;
(3)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m,k(m,k∈N*)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.

查看答案和解析>>

楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第4個(gè)數(shù);

(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為,求n的值;

(3)若n階(包括0階)楊輝三角的所有數(shù)的和;

(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:

第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).

試用含有m、k(m,k∈N*)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.

查看答案和解析>>

(本題滿分15分)楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第3個(gè)數(shù);
(2)若第行中從左到右第13與第14個(gè)數(shù)的比為,求的值;
(3)寫(xiě)出第行所有數(shù)的和,寫(xiě)出階(包括階)楊輝三角中的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35,我們發(fā)現(xiàn),事實(shí)上,一般地有這樣的結(jié)論:第斜列中(從右上到左下)前個(gè)數(shù)之和,一定等于第斜列中第個(gè)數(shù).
試用含有,的數(shù)學(xué)式子表示上述結(jié)論,并證明.

查看答案和解析>>

(本題滿分15分)楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

  

(1)求第20行中從左到右的第3個(gè)數(shù);

(2)若第行中從左到右第13與第14個(gè)數(shù)的比為,求的值;

(3)寫(xiě)出第行所有數(shù)的和,寫(xiě)出階(包括階)楊輝三角中的所有數(shù)的和;

(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35,我們發(fā)現(xiàn),事實(shí)上,一般地有這樣的結(jié)論:第斜列中(從右上到左下)前個(gè)數(shù)之和,一定等于第斜列中第個(gè)數(shù).

試用含有,的數(shù)學(xué)式子表示上述結(jié)論,并證明.

 

查看答案和解析>>

(本題滿分15分)楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

  

(1)求第20行中從左到右的第3個(gè)數(shù);

   (2)若第行中從左到右第13與第14個(gè)數(shù)的比為,求的值;

   (3)寫(xiě)出第行所有數(shù)的和,寫(xiě)出階(包括階)楊輝三角中的所有數(shù)的和;

(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35,我們發(fā)現(xiàn),事實(shí)上,一般地有這樣的結(jié)論:第斜列中(從右上到左下)前個(gè)數(shù)之和,一定等于第斜列中第個(gè)數(shù).

        試用含有,的數(shù)學(xué)式子表示上述結(jié)論,并證明.

查看答案和解析>>


同步練習(xí)冊(cè)答案