題目列表(包括答案和解析)
設(shè)f(x)是定義在[-1,1]上的偶函數(shù),g(x)與f(x)的圖象關(guān)于直線x-1=0對稱,且當(dāng)x∈[2,3]時,g(x)=2a·(x-2)-4
(a為常數(shù))
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)設(shè)a∈(6+∞),試判斷f(x)在[-1,1]上的單調(diào)性,并求使f(x)圖象的最高點落在直線y=12上時相應(yīng)的a值.
設(shè)f(x)是定義在[-1,1]上的偶函數(shù),f(x)與g(x)的圖象關(guān)于直線x=1對稱,且當(dāng)x∈[2,3]時,g(x)=2a(x-2)-4(x-2)3,
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)是否存在正實數(shù)a,使得f(x)的圖象的最高點在直線y=12上?若存在,求出正實數(shù)a的值;若不存在,請說明理由.
設(shè)f(x)的定義在R上的奇函數(shù),且函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線x=1對稱,當(dāng)x>2時,g(x)=a(x-2)-(x-2)3(a為常數(shù))
(1)求f(x)的解析式;
(2)若f(x)對區(qū)間[1,+∞)上的每個x值,恒有f(x)≥-2a成立,求a的取值范圍.
設(shè)f(x)是定義在[-1,1]上的偶函數(shù),g(x)的圖象與f(x)的圖象關(guān)于直線x=1對稱,且當(dāng)x∈[2,3]時,g(x)=2a(x-2)-4(x-2)3.
(1)求f(x)的解析式;
(2)若f(x)在(0,1]上為增函數(shù),求a的取值范圍;
(3)是否存在正整數(shù)a,使f(x)的圖象的最高點落在直線y=12上?若存在,求出a的值;若不存在,請說明理由.
下列說法正確的為_________.
①集合A={x|x2―3x―10≤0},B={x|a+1≤2a≤1},若B
A,則-3≤a≤3;
②函數(shù)y=f(x)與直線x=1的交點個數(shù)為0或1;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
④![]()
,+∞)時,函數(shù)y=lg(x2+x+a)的值域為R;
⑤與函數(shù)y=f(x)-2關(guān)于點(1,-1)對稱的函數(shù)為y=-f(2-x).
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com