題目列表(包括答案和解析)
已知數(shù)列
的前
項(xiàng)和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項(xiàng)公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用
關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時(shí),由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時(shí),
,命題成立;
②假設(shè)
時(shí),命題成立,即
,
則當(dāng)
時(shí),![]()
![]()
即![]()
即![]()
故當(dāng)
時(shí),命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
各項(xiàng)均為正數(shù)的數(shù)列
的前
項(xiàng)和為
,滿足![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列
滿足
,
數(shù)列
滿足
,數(shù)列
的前![]()
項(xiàng)和為
,求
;
(3)若數(shù)列
,甲同學(xué)利用第(2)問中的
,試圖確定
的值是否可以等于2011?為此,他設(shè)計(jì)了一個(gè)程序
(如圖),但乙同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會是一個(gè)“死循環(huán)”(即程序會永遠(yuǎn)循環(huán)下去,而無法結(jié)束),你是否同意乙同學(xué)的觀點(diǎn)?請說明理由。![]()
各項(xiàng)均為正數(shù)的數(shù)列
的前
項(xiàng)和為
,滿足![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列
滿足
,
數(shù)列
滿足
,數(shù)列
的前![]()
項(xiàng)和為
,求
;
(3)若數(shù)列
,甲同學(xué)利用第(2)問中的
,試圖確定
的值是否可以等于2011?為此,他設(shè)計(jì)了一個(gè)程序
(如圖),但乙同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會是一個(gè)“死循環(huán)”(即程序會永遠(yuǎn)循環(huán)下去,而無法結(jié)束),你是否同意乙同學(xué)的觀點(diǎn)?請說明理由。
![]()
(本小題滿分12)已知等差數(shù)列{
}中,![]()
求{
}前n項(xiàng)和
.解析:本題考查等差數(shù)列的基本性質(zhì)及求和公式運(yùn)用能力,利用方程的思想可求解。
解:設(shè)
的公差為
,則
![]()
即![]()
解得![]()
因此![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com