題目列表(包括答案和解析)
(04年上海卷)(16分)
如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)
(1) 證明:P-ABC為正四面體;
(2) 若PD=
PA, 求二面角D-BC-A的大。(結(jié)果用反三角函數(shù)值表示)
(3) 設(shè)棱臺(tái)DEF-ABC的體積為V, 是否存在體積為V且各棱長(zhǎng)均相等的直
平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和? 若存在,請(qǐng)具體構(gòu)造
出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.
![]()
(本小題滿分16分)
如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點(diǎn).
![]()
(1)求
的長(zhǎng);
(2)求
的值;
(3)求證:A1B ⊥C1M(14分).
(本小題滿分16
分)如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點(diǎn).![]()
(1)求
的長(zhǎng);
(2)求
的值;
(3)求證:A1B⊥C1M(14分).
(本小題滿分16分)如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點(diǎn).
![]()
(1)求
的長(zhǎng);
(2)求
的值;
(3)求證:A1B ⊥C1M(14分).
(本題滿分16分 )
在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a .
(Ⅰ)求a的值;
(Ⅱ)求平面A1BC1與平面B1BC1所成的銳二面角的大。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com