題目列表(包括答案和解析)
已知函數(shù)![]()
(Ⅰ)若函數(shù)
恰好有兩個不同的零點,求
的值。
(Ⅱ)若函數(shù)
的圖象與直線
相切,求
的值及相應(yīng)的切點坐標。
【解析】第一問中,利用
當
時,
在
單調(diào)遞增,此時
只有一個零點;
當
時,
或
,得![]()
第二問中,設(shè)切點為
,則![]()
所以,當
時,
為
;當
時,
為![]()
解:(Ⅰ)
2分
當
時,
在
單調(diào)遞增,此時
只有一個零點;
當
時,
或
,得
4分
(Ⅱ)設(shè)切點為
,則
3分
所以,當
時,
為
;當
時,
為![]()
已知
,
,
(Ⅰ)求
的值;
(Ⅱ)求
的值。
【解析】第一問中,因為
,∴![]()
∴
或
又
∴![]()
第二問中原式=![]()
=
進而得到結(jié)論。
(Ⅰ)解:∵
∴![]()
∴
或
……………………………………3分
又
∴
……………………………2分
(Ⅱ) 解:原式=
……………………2分
=
…………2分
=![]()
三、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟(本大題共6個大題,共76分)。
17.(12分)以下資料是一位銷售經(jīng)理收集來的每年銷售額和銷售經(jīng)驗?zāi)陻?shù)的關(guān)系:
|
銷售經(jīng)驗(年) |
1 |
3 |
4 |
4 |
6 |
8 |
10 |
10 |
11 |
13 |
|
年銷售額(千元) |
80 |
97 |
92 |
102 |
103 |
111 |
119 |
123 |
117 |
136 |
(1)依據(jù)這些數(shù)據(jù)畫出散點圖并作直線
=78+4.2x,計算
(yi-
i)2;
(2)依據(jù)這些數(shù)據(jù)由最小二乘法求線性回歸方程,并據(jù)此計算
;
(3)比較(1)和(2)中的殘差平方和
的大。
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對任意
,
,不等式
恒成立,求實數(shù)
的取值范圍.
【解析】第一問利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問中,若對任意
不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對任意
不等式
恒成立,
問題等價于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以
; ............6分
![]()
當b<1時,
;
當
時,
;
當b>2時,
;
............8分
問題等價于![]()
........11分
解得b<1 或
或
即
,所以實數(shù)b的取值范圍是
某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3人.
|
|
視覺記憶能力 |
||||
|
偏低 |
中等 |
偏高 |
超常 |
||
|
聽覺 記憶 能力 |
偏低 |
0 |
7 |
5 |
1 |
|
中等 |
1 |
8 |
3 |
|
|
|
偏高 |
2 |
|
0 |
1 |
|
|
超常 |
0 |
2 |
1 |
1 |
由于部分數(shù)據(jù)丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
.
(I)試確定
、
的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數(shù)為
,求隨機變量
的數(shù)學期望
.
【解析】1)中由表格數(shù)據(jù)可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分
所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分
(2)中由表格數(shù)據(jù)可知,具有聽覺記憶能力或視覺記憶能力超常的學生共有8人.
方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件B,
則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件![]()
(3)中由于從40位學生中任意抽取3位的結(jié)果數(shù)為
,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學生共24人,從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結(jié)果數(shù)為
,………………………7分
所以從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為
,k=0,1,2,3
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com