題目列表(包括答案和解析)
在棱長為
的正方體
中,
是線段
的中點(diǎn),
.
(1) 求證:
^
;
(2) 求證:
//平面
;
(3) 求三棱錐
的表面積.
![]()
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用
,得到結(jié)論,第二問中,先判定
為平行四邊形,然后
,可知結(jié)論成立。
第三問中,
是邊長為
的正三角形,其面積為
,
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面
,所以
,
所以
是直角三角形,其面積為
,
同理
的面積為
,
面積為
. 所以三棱錐
的表面積為
.
解: (1)證明:根據(jù)正方體的性質(zhì)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,
所以
,又
,所以
,
,
所以
^
.
………………4分
(2)證明:連接
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,
所以
為平行四邊形,因此
,
由于
是線段
的中點(diǎn),所以
, …………6分
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">
面
,![]()
平面
,所以
∥平面
. ……………8分
(3)
是邊長為
的正三角形,其面積為
,
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面
,所以
,
所以
是直角三角形,其面積為
,
同理
的面積為
,
……………………10分
面積為
. 所以三棱錐
的表面積為
![]()
設(shè)f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由
的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
【解析】第一問中,![]()
即
變換分為三步,①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的
倍,得到函數(shù)
的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)
的圖象;
第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以
,則
,又![]()
,
,從而![]()
進(jìn)而得到結(jié)論。
(Ⅰ) 解:![]()
即
!3分
變換的步驟是:
①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的
倍,得到函數(shù)
的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)
的圖象;…………………………………3分
(Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以
,則
,又![]()
,
,從而
……2分
(1)當(dāng)
時,
;…………2分
(2)當(dāng)
時;![]()
某高校“統(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表
|
專業(yè) 性別 |
非統(tǒng)計(jì)專業(yè) |
統(tǒng)計(jì)專業(yè) |
|
男 |
13 |
10 |
|
女 |
7 |
20 |
為了判斷主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051818373204681060/SYS201205181838114687151715_ST.files/image002.png">,所以判定主修統(tǒng)計(jì)專業(yè)與性別有關(guān)系,這種判斷出錯的可能性為_________
|
|
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
在數(shù)學(xué)證明中,①假言推理、②三段論推理、③傳遞關(guān)系推理、④完全歸納推理,是經(jīng)常使用的四種演繹推理,下面推理過程使用到上述推理規(guī)則中的( )如(右圖)
![]()
因?yàn)閘
AB,所以
又因?yàn)锳B//CD,所以![]()
所以![]()
A. ①②③ B.②③④
C. ②③ D.①②③④
設(shè)點(diǎn)
是拋物線![]()
![]()
的焦點(diǎn),
是拋物線
上的
個不同的點(diǎn)(![]()
).
(1) 當(dāng)
時,試寫出拋物線
上的三個定點(diǎn)
、
、
的坐標(biāo),從而使得
;
(2)當(dāng)
時,若
,
求證:
;
(3) 當(dāng)
時,某同學(xué)對(2)的逆命題,即:
“若
,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù)
,試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實(shí)得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點(diǎn)為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時,拋物線
的焦點(diǎn)為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點(diǎn)為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以
,
故可取![]()
![]()
滿足條件.
(2)設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時,拋物線
的焦點(diǎn)為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個當(dāng)
時,該逆命題的一個反例.(反例不唯一)
② 設(shè)
,分別過
作
拋物線
的準(zhǔn)線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)
的縱坐標(biāo)無關(guān),所以只要將這
點(diǎn)都取在
軸的上方,則它們的縱坐標(biāo)都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質(zhì)上只需構(gòu)造滿足條件且
的一組
個不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)
的縱坐標(biāo)
(
)滿足
”,即:
“當(dāng)
時,若
,且點(diǎn)
的縱坐標(biāo)
(
)滿足
,則
”.此命題為真.事實(shí)上,設(shè)
,
分別過
作拋物線
準(zhǔn)線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補(bǔ)充條件2:“點(diǎn)
與點(diǎn)![]()
為偶數(shù),
關(guān)于
軸對稱”,即:
“當(dāng)
時,若
,且點(diǎn)
與點(diǎn)![]()
為偶數(shù),
關(guān)于
軸對稱,則
”.此命題為真.(證略)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com