題目列表(包括答案和解析)
如圖,已知直線
(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)
是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點
所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
![]()
【解析】第一問中利用圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即
,解得
(
舍去)
設(shè)
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,![]()
第二問中,由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴
因為
是定點,所以點
在定直線![]()
第三問中,設(shè)直線
,代入
得
結(jié)合韋達定理得到。
解:(Ⅰ)由已知,圓
:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即
,解得
(
舍去). …………………(2分)
設(shè)
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設(shè)
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴
因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設(shè)直線
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是![]()
如圖1,在
中,
,D,E分別為AC,AB的中點,點F為線段CD上的一點,將
沿DE折起到
的位置,使
,如圖2.
(Ⅰ)求證:DE∥平面![]()
(Ⅱ)求證:![]()
(Ⅲ)線段
上是否存在點Q,使
?說明理由。
![]()
【解析】(1)∵DE∥BC,由線面平行的判定定理得出
(2)可以先證
,得出
,∵
∴![]()
∴![]()
(3)Q為
的中點,由上問
,易知
,取
中點P,連接DP和QP,不難證出
,
∴
∴
,又∵
∴![]()
如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求證:PD⊥BC;
(II)求二面角B—PD—C的正切值。
![]()
【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二問中解:取PD的中點E,連接CE、BE,
為正三角形,![]()
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,
∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進而求解。
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com