題目列表(包括答案和解析)
求圓心在直線y=-2x上,并且經(jīng)過(guò)點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r=
=
,
故所求圓的方程為:
+
=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圓的方程為:
+
=2
………………………12分
法二:由條件設(shè)所求圓的方程為:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圓的方程為:
+
=2
………………………12分
其它方法相應(yīng)給分
4. m>2或m<-2 解析:因?yàn)閒(x)=
在(-1,1)內(nèi)有零點(diǎn),所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2
隨機(jī)變量
的所有等可能取值為1,2…,n,若
,則( )
A. n=3 B.n=4 C. n=5 D.不能確定
5.m=-3,n=2 解析:因?yàn)?img width=127 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/81/253081.gif">的兩零點(diǎn)分別是1與2,所以
,即
,解得![]()
6.
解析:因?yàn)?img width=95 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/86/253086.gif">只有一個(gè)零點(diǎn),所以方程
只有一個(gè)根,因此
,所以![]()
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若不等式
對(duì)任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價(jià)于
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對(duì)任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時(shí),
,成立.
假設(shè)當(dāng)
時(shí),不等式
成立,
當(dāng)
時(shí),
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對(duì)任意
,不等式
恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項(xiàng)公式
, …………10分
, …………12分
所以對(duì)
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
求圓心
在直線
上,且經(jīng)過(guò)原點(diǎn)及點(diǎn)
的圓
的標(biāo)準(zhǔn)方程.
【解析】本試題主要考查的圓的方程的求解,利用圓心和半徑表示圓,首先設(shè)圓心C的坐標(biāo)為(
),然后利用
,得到
,從而圓心
,半徑
.可得原點(diǎn) 標(biāo)準(zhǔn)方程。
解:設(shè)圓心C的坐標(biāo)為(
),...........2分
則
,即
,解得
........4分
所以圓心
,半徑
...........8分
故圓C的標(biāo)準(zhǔn)方程為:
.......10分
![]()
如圖,長(zhǎng)方體
中,底面
是正方形,
是
的中點(diǎn),
是棱
上任意一點(diǎn)。
(Ⅰ)證明:![]()
;
(Ⅱ)如果
=2 ,
=
,
, 求
的長(zhǎng)。
![]()
【解析】(Ⅰ)因底面是正方形,故![]()
,又側(cè)棱垂直底面,可得
,而
,所以
面
,因
,所以
面
,又
面
,所以![]()
;
(Ⅱ)因
=2 ,
=
,,可得
,
,設(shè)
,由
得
,即
,解得
,即
的長(zhǎng)為
。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com