題目列表(包括答案和解析)
已知中心在原點(diǎn),焦點(diǎn)在
軸上的橢圓
的離心率為
,且經(jīng)過(guò)點(diǎn)![]()
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存過(guò)點(diǎn)
(2,1)的直線(xiàn)
與橢圓
相交于不同的兩點(diǎn)
,滿(mǎn)足
?若存在,求出直線(xiàn)
的方程;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用設(shè)橢圓
的方程為
,由題意得![]()
解得![]()
第二問(wèn)若存在直線(xiàn)
滿(mǎn)足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本(xiàn)
與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以![]()
所以
.解得。
解:⑴設(shè)橢圓
的方程為
,由題意得![]()
解得
,故橢圓
的方程為
.……………………4分
⑵若存在直線(xiàn)
滿(mǎn)足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本(xiàn)
與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以![]()
所以
.
又
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即
,
所以![]()
.
即
.
所以
,解得
.
因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線(xiàn)L1滿(mǎn)足條件,其方程為y=1/2x
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問(wèn)中∵
,∴
,…………………1分
∵
,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由
,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
把函數(shù)
的圖象按向量
平移得到函數(shù)
的圖象.
(1)求函數(shù)
的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問(wèn)中,利用設(shè)
上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入
,便可以得到結(jié)論。第二問(wèn)中,令
,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)
上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令
,……6分
則
……8分
,∴
,∴
在
上單調(diào)遞增.……10分
故
,即![]()
已知函數(shù)
的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線(xiàn)的斜率是
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)
,曲線(xiàn)
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)
時(shí),
,則
。
依題意得:
,即
解得
第二問(wèn)當(dāng)
時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線(xiàn)
上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)
時(shí),
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時(shí),
,令
得![]()
當(dāng)
變化時(shí),
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當(dāng)
時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)
時(shí),
在
上單調(diào)遞增!
在
最大值為
。
綜上,當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線(xiàn)
上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無(wú)解,因此
。此時(shí)
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對(duì)于
,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù)
,曲線(xiàn)
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
設(shè)橢圓
的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線(xiàn)
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線(xiàn)
的斜率
滿(mǎn)足![]()
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線(xiàn)OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線(xiàn)OP的方程為
,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com