欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

參考數據:1.414.1.732 33已知如圖.四邊形ABCD中.AB=BC.AD=CD.求證:∠A=∠C.(B類)已知如圖.四邊形ABCD中.AB=BC.∠A=∠C.求證:AD=CD. 查看更多

 

題目列表(包括答案和解析)

(本題8分)
某數學興趣小組,利用樹影測量樹高.已測出樹AB的影長AC為9米,并測出此時太陽光線與地面成30°夾角.

(1)求出樹高AB;
(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設太陽光線與地面夾角保持不變。
【小題1】①求樹與地面成45°角時的影長。
【小題2】②試求樹影的最大長度.
(計算結果精確到0.1米,參考數據:≈1.414, ≈1.732)

查看答案和解析>>

重慶旺旺苗圃去年銷售的某種樹苗每棵的售價y(元)與月份x之間滿足一次函數關系y=-x+62而去年的月銷售量P(棵)與月份x之間成一次函數關系,其中兩個月的銷售情況如下表:
月份x1月5月
銷售量P(棵)41004500
(1)求該種樹苗在去年哪個月銷售金額最大?最大是多少?
(2)由于受干旱影響,今年1月份該種樹苗的銷售量比去年12月份下降了25%.若將今年1月份售出的樹苗全部進行移栽,則移栽當年的存活率為(1-n%),且平均每棵樹苗每年可吸碳1.6千克,隨著該樹苗對環(huán)境的適應及生長,第二年全部存活,且每棵樹苗的吸碳能力增加0.5n%.這樣,這批樹苗第二年的吸碳總量為5980千克,求n的值. (保留一位小數)(參考數據:≈1.414,≈1.732,≈2.236,≈2.449)

查看答案和解析>>

如圖,在一張圓桌(圓心為點O)的正上方點A處吊著一盞照明燈,實踐證明:桌子邊沿處的光的亮度與燈距離桌面的高度AO有關,且當sin∠ABO=時,桌子邊沿處點B的光的亮度最大,設OB=60cm,求此時燈距離桌面的高度OA(結果精確到1cm).

(參考數據:≈1.414;≈1.732;≈2.236)

 

 

 

查看答案和解析>>

(本題滿分8分)元旦,小美和同學一起到游樂場游玩.游樂場的大型摩天輪的半徑為20m,勻速旋轉1周需要12min.小美乘坐最底部的車廂(離地面約0.5m)開始1周的觀光.請回答下列問題:(參考數據:≈l.414,≈1.732)

1. (1) 1.5min后小美離地面的高度是    ▲    m.(精確到0.1m)

2.(2)摩天輪啟動    ▲    min后,小美離地面的高度將首次達到10.5m.

3.(3)小美將有    ▲    min連續(xù)保持在離地面10.5m以上的空中.

4.(4)t min(0≤t≤6)后小美離地面的高度h是多少?(結果用t表示)

 

查看答案和解析>>

如圖所示,某幼兒園為了加強安全管理,決定將園內的滑滑板的傾斜角由45°降為30°,已知原滑滑板AB的長為5米,點D、B、C在同一水平地面上.若滑滑板的正前方能有3米長的空地就能保證安全,原滑滑板的前方有6米長的空地,像這樣改造是否可行?請說明理由.(參考數據:≈1.414,≈1.732,≈2.449)

查看答案和解析>>

一、填空題:

160°.

2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;

3.1;

4.4。

5.60

7.2-2     

8.15。

9.5

10.4

11.5

12. 2,3,n。

14.

 

15. (-8,0)。

 

16.6。

17. .平行四邊形。

18.60

19.4,12           

二、選擇題:

1.C

 

2.C

3.B

4.B

 

5.B

6.A

 

7.C。

 

8.B。

 

9.C

 

10.D

 

 

11.C。

 

12.B

13.B 

14.C 

15.D

16. C

17.C   

18.D    

19.D

20.C

21.D

22.D。

三、解答題:

11如圖答2,因為AD∥BC,AB∥DC  ------------------------------------------------- 2分

所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分

分別過點B、D作BF⊥AD,DE⊥AB,垂足分別為點E、F.

則BE = CF.-------------------------------------------------------------------------------------------- 4分

因為∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分

所以AD = AB.            

所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分

(2存在最小值和最大值.-------------------------------------------------------------------------- 7分

① 當∠DAB = 90°時,菱形ABCD為正方形,周長最小值為8;---------------------------8分

② 當AC為矩形紙片的對角線時,設AB = x,如圖答3,在Rt△BCG中,

,.所以周長最大值為17.-------------------------------------------9分

          

 

 

                                                                                                 

 

 

 

 

 

 

 

 

  2.證明:  ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′       

              證得:△AOE≌△COF-----------------------------------------------------------3′

          證得:四邊形AECF是平行四邊形------------------------------------------------5′

       由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′

 

 

5.(本題滿分8分)

解:(1)方法一:如圖①

∵在 ABCD中,ADBC

∴∠DAB+∠ABC=180°                  ………………………1分

AE、BF分別平分∠DAB和∠ABC

∴∠DAB=2∠BAE,∠ABC=2∠ABF              ………………………2分

∴2∠BAE+2∠ABF=180°

即∠BAE+∠ABF=90°                 ………………………3分

∴∠AMB=90°

AEBF                                     …………………………4分

    <ul id="l9fia"></ul>
        <rp id="l9fia"><input id="l9fia"></input></rp>
      1. <abbr id="l9fia"></abbr>

        圖②

         

         

         

         

         

         

        方法二:如圖②,延長BC、AE相交于點P     

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                               …………………………1分

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                               …………………………2分

        ∴∠APB=∠PAB

        ∴AB=BP                                                                   ………………………3分

        ∵BF平分∠ABP

        ∴:AP⊥BF

        即AE⊥BF.                                                            ………………………4分

        (2)方法一:線段DFCE是相等關系,即DF=CE     ………………5分

        ∵在ABCD中,CDAB

        ∴∠DEA=∠EAB

        又∵AE平分∠DAB

        ∴∠DAE=∠EAB

        ∴∠DEA=∠DAE

        DEAD                                         ………………………6分

        同理可得,CFBC                               ………………………7分

        又∵在ABCD中,ADBC

        DECF

        DEEFCFEF

        DFCE.                                         ………………………8分

        方法二:如右圖,延長BC、AE設交于點P,延長AD、BF相交于點O       …5分

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                                   

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                                  

        ∴∠APB=∠PAB

        ∴BP=AB

        同理可得,AO=AB                 

            ∴AO=BP                                   ………………………6分

                ∵在ABCD中,AD=BC

                ∴OD=PC

         又∵在ABCD中,DC∥AB

               ∴△ODF∽△OAB,△PCE∽△PBA                  ………………………7分

               ∴,

               ∴DF=CE.                                                                     ………………………8分

         

        6. (1)(2)略  。3)設BC=x,則DC=x  ,BD=,CF=(-1)x

        GD2=GE?GB=4-2      DC2+CF2=(2GD)2   即 x2+(-1)2x2=4(4-2

        (4-2)x2=4(4-2)    x2=4   正方形ABCD的面積是4個平方單位

         

         

        7.(本小題滿分5分)

        證明:∵  AB∥CD

        ∴                …………1分

        ∵ 

        ∴  △ABO≌△CDO                 …………3分

        ∴                      …………4分

        ∴  四邊形ABCD是平行四邊形       …………5分

         

         

         

         

         

        11.證明:(1)①在中,

        ,,????????????????????????????????????????????????????????????????????????? 2分

        .????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        ,

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,

         

        12.(本題7分)

        解:(1)在梯形中,,

        ,,

        ,

        ,

        ,

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        .???????????????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        ,,

        .?????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        的函數表達式是

        ;??????????????????????????????????????????????????????????????????????????????????????? 5分

        (2)

        .?????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        時,有最大值,最大值為.??????????????????????????????????????????????????????????????????? 7分

         

         

         

        13.證明:菱形中,.???????????????????? 1分

        分別是的中點,

        .?????????????????? 3分

        ,.????????????????? 5分

        .??????????????????????????????? 7分

        14.

        15.證明:四邊形是平行四邊形,,

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 1分

        平分.????????????????????????????????????????????????????????????????? 2分

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .??????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        ,.???????????????????????????????????????????????????????????????????????????????????? 5分

         

        16.解:(1)①40.?????????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        ②0. ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        (2)不合理.例如,對兩個相似而不全等的矩形來說,它們接近正方形的程度是相同的,但卻不相等.合理定義方法不唯一,如定義為越小,矩形越接近于正方形;越大,矩形與正方形的形狀差異越大;當時,矩形就變成了正方形.???????????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        17.解:(1)正方形中,

        ,因此,即菱形的邊長為

        中,,

        ,,

        ,

        ,即菱形是正方形.

        同理可以證明

        因此,即點邊上,同時可得,

        從而.????????????????????????????????????????????????????????????????????????????????????????? 2分

        (2)作為垂足,連結

        ,,

        中,,,

        ,即無論菱形如何變化,點到直線的距離始終為定值2.

        因此.??????????????????????????????????????????????????????????????????????????? 6分

        (3)若,由,得,此時,在中,

        相應地,在中,,即點已經不在邊上.

        故不可能有.???????????????????????????????????????????????????????????????????????????????????????????????? 9分

        另法:由于點在邊上,因此菱形的邊長至少為,

        當菱形的邊長為4時,點邊上且滿足,此時,當點逐漸向右運動至點時,的長(即菱形的邊長)將逐漸變大,最大值為

        此時,,故

        而函數的值隨著的增大而減小,

        因此,當時,取得最小值為

        又因為,所以,的面積不可能等于1.????????????????????? 9分

        18.

        19.證明:在等腰中,,

             ,.又,

             .????????????????????????????????????????????????????????????????????????? 3分

             

             .?????????????????? 5分

             又不平行,四邊形是梯形.??????????????????????????????????? 7分

             四邊形是等腰梯形.(理由:同一底上的兩底角相等的梯形是等腰梯形,或兩腰相等的梯形是等腰梯形)?????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

         

        20.解:(1)在矩形中,,,

        .……………………1分

            ,

            ,即

        同步練習冊答案
      2. <rp id="l9fia"><input id="l9fia"></input></rp>