欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(1)求動點的軌跡E的方程, 查看更多

 

題目列表(包括答案和解析)

已知定點A(1,0),B(-1,0),C(0,1),D(0,2),動點P滿足:
AP
BP
=k|
PC
|
2

(1)求動點P軌跡M的方程,并說明方程表示的曲線類型;
(2)當(dāng)k=2時:
①E是x軸上的動點,EK,EQ分別切曲線M于K,Q兩點,如果|KQ|=
4
5
5
,求線段KQ的垂直平分線方程;
②若E點在△ABC邊上運動,EK,EQ分別切曲線M于K,Q兩點,求四邊形DKEQ的面積的取值范圍.

查看答案和解析>>

(2012•邯鄲一模)在平面直角坐標(biāo)系中,點P(x,y)為動點,已知點A(
2
,0)
,B(-
2
,0)
,直線PA與PB的斜率之積為-
1
2

(I)求動點P軌跡E的方程;
( II)過點F(1,0)的直線l交曲線E于M,N兩點,設(shè)點N關(guān)于x軸的對稱點為Q(M、Q不重合),求證:直線MQ過定點.

查看答案和解析>>

在平面直角坐標(biāo)系中,若,且,

(1)求動點的軌跡的方程;

(2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數(shù)的值。

查看答案和解析>>

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

已知分別是直線上的兩個動點,線段的長為的中點.

(1)求動點的軌跡的方程;

(2)過點任意作直線(與軸不垂直),設(shè)與(1)中軌跡交于兩點,與軸交于點.若,證明:為定值.

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

      • <blockquote id="4tjw5"><dl id="4tjw5"></dl></blockquote>

        20090508

        (2)設(shè),則,

        由正弦定理:,

        所以兩個正三角形的面積和,…………8分

        ……………10分

        ,

        所以:………………………………………………………………12分

        18.解:(1);……………………6分

        (2)消費總額為1500元的概率是:……………………7分

        消費總額為1400元的概率是:………8分

        消費總額為1300元的概率是:

        ,…11分

        所以消費總額大于或等于1300元的概率是;……………………12分

        19.(1)證明:因為,所以平面,

        又因為,

        平面,

        平面平面;…………………4分

        (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

        過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

        所以的長為所求,………………………………………………………………………6分

        因為,所以為二面角的平面角,,

        =1,

        到平面的距離等于1;…………………………………………………………8分

        (3)連接,由平面,,得到,

        所以是二面角的平面角,

        ,…………………………………………………………………11分

        二面角大小是!12分

        20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

        ,

        解得,所以,…………………3分

        所以,

        所以;…………………………………………………………………6分

        (2),因為,所以數(shù)列是遞增數(shù)列,…8分

        當(dāng)且僅當(dāng)時,取得最小值,

        則:

        所以,即的取值范圍是!12分

        21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為,

        因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

        (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

        假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

         

        …………………………………………7分

        弦長為定值,則,即,

        此時,……………………………………………………9分

        所以當(dāng)時,存在直線,截得的弦長為

            當(dāng)時,不存在滿足條件的直線!12分

        22.解:(1),

        ,……2分

        ,

        因為當(dāng)時取得極大值,所以,

        所以的取值范圍是:;………………………………………………………4分

        (2)由下表:

        0

        0

        遞增

        極大值

        遞減

        極小值

        遞增

        ………………………7分

        畫出的簡圖:

        依題意得:,

        解得:

        所以函數(shù)的解析式是:

        ;……9分

        (3)對任意的實數(shù)都有

        依題意有:函數(shù)在區(qū)間

        上的最大值與最小值的差不大于,

        ………10分

        在區(qū)間上有:

        ,

        的最大值是

        的最小值是,……13分

        所以

        的最小值是。………………………………………14分