欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

.其中為大于0的常數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)+cosωx
(其中ω為大于0的常數(shù)),若函數(shù)f(x)在[-
π
2
,
π
2
]
上是增函數(shù),則ω的取值范圍是
(0,
2
3
]
(0,
2
3
]

查看答案和解析>>

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層(即x=0時(shí)),每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求k的值;

(2)求f(x)的表達(dá)式;

(3)利用“函數(shù)(其中為大于0的常數(shù)),在上是減函數(shù),在上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求出這個(gè)最小值.

 

查看答案和解析>>

已知函數(shù)(其中ω為大于0的常數(shù)),若函數(shù)上是增函數(shù),則ω的取值范圍是   

查看答案和解析>>

己知集合M={(x,y)|x>0,y>0,x+y=k},其中k為大于0的常數(shù).
(Ⅰ)對(duì)任意(x,y)∈M,t=xy,求t的取值范圍;
(Ⅱ)求證:當(dāng)k≥1時(shí),不等式(
1
x
-x)(
1
y
-y)≤(
k
2
-
2
k
)2
對(duì)任意(x,y)∈M恒成立;
(Ⅲ)求使不等式(
1
x
-x)(
1
y
-y)≥(
k
2
-
2
k
)2
對(duì)任意(x,y)∈M恒成立的k的范圍.

查看答案和解析>>

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k
3x+5
(0≤x≤10)
,若不建隔熱層(即x=0時(shí)),每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值;
(2)求f(x)的表達(dá)式;
(3)利用“函數(shù)y=x+
a
x
(其中a為大于0的常數(shù)),在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求出這個(gè)最小值.

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

        <nobr id="c0lju"><div id="c0lju"></div></nobr>

          20090508

          (2)設(shè),則,

          由正弦定理:,

          所以?xún)蓚(gè)正三角形的面積和,…………8分

          ……………10分

          ,

          所以:………………………………………………………………12分

          18.解:(1);……………………6分

          (2)消費(fèi)總額為1500元的概率是:……………………7分

          消費(fèi)總額為1400元的概率是:………8分

          消費(fèi)總額為1300元的概率是:

          ,…11分

          所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

          19.(1)證明:因?yàn)?sub>,所以平面

          又因?yàn)?sub>

          平面,

          平面平面;…………………4分

          (2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

          過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面,

          所以的長(zhǎng)為所求,………………………………………………………………………6分

          因?yàn)?sub>,所以為二面角的平面角,,

          =1,

          點(diǎn)到平面的距離等于1;…………………………………………………………8分

          (3)連接,由平面,,得到,

          所以是二面角的平面角,

          ,…………………………………………………………………11分

          二面角大小是!12分

          20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

          ,

          解得,所以,…………………3分

          所以,

          ,

          所以;…………………………………………………………………6分

          (2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

          當(dāng)且僅當(dāng)時(shí),取得最小值,

          則:

          所以,即的取值范圍是!12分

          21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

          因?yàn)?sub>,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

          (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

          假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為

           

          …………………………………………7分

          弦長(zhǎng)為定值,則,即,

          此時(shí),……………………………………………………9分

          所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為

              當(dāng)時(shí),不存在滿足條件的直線!12分

          22.解:(1)

          ,……2分

          ,

          因?yàn)楫?dāng)時(shí)取得極大值,所以

          所以的取值范圍是:;………………………………………………………4分

          (2)由下表:

          0

          0

          遞增

          極大值

          遞減

          極小值

          遞增

          ………………………7分

          畫(huà)出的簡(jiǎn)圖:

          依題意得:,

          解得:

          所以函數(shù)的解析式是:

          ;……9分

          (3)對(duì)任意的實(shí)數(shù)都有

          ,

          依題意有:函數(shù)在區(qū)間

          上的最大值與最小值的差不大于

          ………10分

          在區(qū)間上有:

          ,

          的最大值是,

          的最小值是,……13分

          所以

          的最小值是!14分