欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.以曲線上的點(diǎn)為切點(diǎn)的切線方程是 查看更多

 

題目列表(包括答案和解析)

 以曲線上的點(diǎn)(1,-1)為切點(diǎn)的切線方程是

    A.         B.

    C.        D.

 

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(I)求以曲線上的點(diǎn)為切點(diǎn)的切線方程;

(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性;

(Ⅲ)如果函數(shù)的圖象與函數(shù)的圖象有四個不同的交點(diǎn),求實數(shù)的取值范圍.

查看答案和解析>>

已知函數(shù)

(I)求以曲線上的點(diǎn)為切點(diǎn)的切線方程;

(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性;

(Ⅲ)如果函數(shù)的圖象與函數(shù)的圖象有四個不同的交點(diǎn),求實數(shù)的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x33
-x2-3x-3a,(a大于0)
.(1)如果a=1,點(diǎn)p為曲線y=f(x)上一個動點(diǎn),求以P為切點(diǎn)的切線其斜率取最小值時的切線方程;
(2)若x∈[a,3a]時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(不等式選做題)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(幾何證明選做題) 如圖,以AB=4為直徑的圓與△ABC的兩邊分別交于E,F(xiàn)兩點(diǎn),∠ACB=60°,則EF=
2
2

C.(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)中,已知點(diǎn)P為方程ρ(cosθ+sinθ)=1所表示的曲線上一動點(diǎn),Q(2,
π
3
),則|PQ|的最小值為
6
2
6
2

查看答案和解析>>

 

一、選擇題(共60分)

1―6DDBBAC  7―12DABCAC

二、填空題:(本大題共5小題,每小題5分,共20分)

13.3

14.

15.

16.240

三、解答題:本大題有6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)記“這名考生通過書面測試”為事件A,則這名考生至少正確做出3道題,即正確做出3道題或4道題,

       故   4分

   (2)由題意得的所有可能取值分別是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列為:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面體ABCD―A1B1C1D1中,

      

       又

          4分

       又

<fieldset id="4m2eg"><small id="4m2eg"></small></fieldset><acronym id="4m2eg"><del id="4m2eg"></del></acronym>
<fieldset id="4m2eg"><object id="4m2eg"></object></fieldset>
      • <table id="4m2eg"><nav id="4m2eg"></nav></table><fieldset id="4m2eg"><small id="4m2eg"></small></fieldset>

             (2)如圖,連B1C,則

                 易證

                 中點(diǎn),

                

                    8分

                 取CD中點(diǎn)M,連BM, 則平面CC1D1D,

                 作于N,連NB,由三垂線定理知:

                 是二面角B―DE―C的平面角     10分

                 在

                

                 則二面角B―DE―C的大小為    12分

                 解法二:(1)以D為坐標(biāo)原點(diǎn),射線DA為軸,建立如圖所示坐標(biāo)為

                 依題設(shè)

                

                

                 又

                 平面BDE    6分

          <tbody id="4m2eg"><del id="4m2eg"></del></tbody><tr id="4m2eg"><button id="4m2eg"></button></tr>

                   8分

                   由(1)知平面BDE的一個法向量為

                   取DC中點(diǎn)M,則

                  

                  

                   等于二面角B―DE―C的平面角    10分

                      12分

            20.解:(1)由已知得   2分

                   由

                  

                   遞減

                   在區(qū)間[-1,1]上的最大值為   4分

                   又

                  

                   由題意得

                   故為所求         6分

               (2)解:

                  

                       8分

                   二次函數(shù)的判別式為:

                  

                   令

                   令    10分

                  

                   為單調(diào)遞增,極值點(diǎn)個數(shù)為0    11分

                   當(dāng)=0有兩個不相等的實數(shù)根,根據(jù)極值點(diǎn)的定義,可知函數(shù)有兩個極值點(diǎn)    12分

            21.解:(1)設(shè)

                   化簡得    3分

               (2)將    4分

                   法一:兩點(diǎn)不可能關(guān)于軸對稱,

                   的斜率必存在

                   設(shè)直線DE的方程為

                   由   5分

                       6分

                      7分

                   且

                      8分

                   將代化入簡得

                      9分

                   將,

                   過定點(diǎn)(-1,-2)    10分

                   將,

                   過定點(diǎn)(1,2)即為A點(diǎn),舍去     11分

                       12分

                   法二:設(shè)    (5分)

                   則   6分

                   同理

                   由已知得   7分

                   設(shè)直線DE的方程為

                   得   9分

                      10分

                   即直線DE過定點(diǎn)(-1,-2)    12分

            22.解:(1)由    2分

                   于是

                   即    3分

                   有   5分

                      6分

               (2)由(1)得    7分

                   而

                  

                           

                       10分

                   當(dāng)

                   于是

                   故命題得證     12分