題目列表(包括答案和解析)
汕頭二中擬建一座長(zhǎng)
米,寬
米的長(zhǎng)方形體育館.按照建筑要求,每隔
米(
,
為正常數(shù))需打建一個(gè)樁位,每個(gè)樁位需花費(fèi)
萬(wàn)元(樁位視為一點(diǎn)且打在長(zhǎng)方形的邊上),樁位之間的
米墻面需花
萬(wàn)元,在不計(jì)地板和天花板的情況下,當(dāng)
為何值時(shí),所需總費(fèi)用最少?
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。先求需打
個(gè)樁位.再求解墻面所需費(fèi)用為:
,最后表示總費(fèi)用
,利用導(dǎo)數(shù)判定單調(diào)性,求解最值。
解:由題意可知,需打
個(gè)樁位.
…………………2分
墻面所需費(fèi)用為:
,……4分
∴所需總費(fèi)用![]()
(
)…7分
令
,則
當(dāng)
時(shí),
;當(dāng)
時(shí),
.
∴當(dāng)
時(shí),
取極小值為
.而在
內(nèi)極值點(diǎn)唯一,所以
.∴當(dāng)
時(shí),
(萬(wàn)元),即每隔3米打建一個(gè)樁位時(shí),所需總費(fèi)用最小為1170萬(wàn)元.
已知遞增等差數(shù)列
滿(mǎn)足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若不等式
對(duì)任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價(jià)于
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對(duì)任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時(shí),
,成立.
假設(shè)當(dāng)
時(shí),不等式
成立,
當(dāng)
時(shí),
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對(duì)任意
,不等式
恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項(xiàng)公式
, …………10分
, …………12分
所以對(duì)
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
已知函數(shù)
(
為實(shí)數(shù)).
(Ⅰ)當(dāng)
時(shí),求
的最小值;
(Ⅱ)若
在
上是單調(diào)函數(shù),求
的取值范圍.
【解析】第一問(wèn)中由題意可知:
. ∵
∴
∴![]()
.
當(dāng)
時(shí),
;
當(dāng)
時(shí),
. 故
.
第二問(wèn)![]()
.
當(dāng)
時(shí),
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.轉(zhuǎn)化后解決最值即可。
解:(Ⅰ) 由題意可知:
. ∵
∴
∴![]()
.
當(dāng)
時(shí),
;
當(dāng)
時(shí),
. 故
.
(Ⅱ) ![]()
.
當(dāng)
時(shí),
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.∵二次函數(shù)
的對(duì)稱(chēng)軸為
,且![]()
∴
或![]()
或![]()
或![]()
或
. 綜上![]()
已知函數(shù)f(x)=
sin(ωx+φ)
(0<φ<π,ω>0)過(guò)點(diǎn)
,函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移
個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.
【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運(yùn)用,第一問(wèn)中利用函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
.得
,
所以![]()
第二問(wèn)中,![]()
![]()
,
![]()
可以得到單調(diào)區(qū)間。
解:(Ⅰ)由題意得
,
,…………………1分
代入點(diǎn)
,得
…………1分
,
∴![]()
(Ⅱ)
,![]()
![]()
的單調(diào)遞減區(qū)間為
,
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com