欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知向量 查看更多

 

題目列表(包括答案和解析)

已知向量
OA
=(2cosα,2sinα)
,
OB
=(-sinβ,cosβ)
,其中O為坐標(biāo)原點(diǎn).若β=α-
π
6
,則|
AB
|
=
 

查看答案和解析>>

已知向量
m
=(sinA,sinB),
n
=(cosB,cosA),
m
n
=sin2C,其中A、B、C為△ABC的內(nèi)角.
(Ⅰ)求角C的大。
(Ⅱ)若sinA,sinC,sinB成等差數(shù)列,且
CA
• (
AB
-
AC
)  =18
,求AB的長(zhǎng).

查看答案和解析>>

已知向量
a
=(2,1),|
a
-
b
|=
10
,|
a
+
b
|=5
2
,則|
b
|=
 

查看答案和解析>>

已知向量
a
=(3,1)
,
b
=(1,3)
,
c
=(k,2)
,若(
a
-
c
)⊥
b
則k=
 

查看答案和解析>>

已知向量
a
=(-5,6)
b
=(6,5)
,則
a
b
( 。
A、垂直B、不垂直也不平行
C、平行且同向D、平行且反向

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區(qū)間的長(zhǎng)度是為,為半個(gè)周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域?yàn)?sub>!14分

19.解:(1)該同學(xué)投中于球但未通過(guò)考核,即投藍(lán)四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

   (2)在這次考核中,每位同學(xué)通過(guò)考核的概率為

      ………………10分

    隨機(jī)變量X服從其數(shù)學(xué)期望

  …………14分

20.解:(1)設(shè)FD的中點(diǎn)為G,則TG//BD,而B(niǎo)D//CE,

    <style id="kqpjv"><delect id="kqpjv"></delect></style>

        當(dāng)a=5時(shí),AF=5,BD=1,得TG=3。

        又CE=3,TG=CE。

        *四邊形TGEC是平行四邊形。      

    *CT//EG,TC//平面DEF,………………4分

       (2)以T為原點(diǎn),以射線TB,TC,TG分別為x,y,z軸,

    建立空間直角坐標(biāo)系,則D(1,0,1),

                  ………………6分

            則平面DEF的法向量n=(x,y,z)滿足:

           

              解之可得又平面ABC的法向量

          m=(0,0,1)

             

             即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

             (3)由P在DE上,可設(shè),……10分

              則

                             ………………11分

              若CP⊥平面DEF,則

              即

           

           

              解之得:                ……………………13分

              即當(dāng)a=2時(shí),在DE上存在點(diǎn)P,滿足DP=3PE,使CP⊥平面DEF。…………14分

          21.解:(1)因?yàn)?sub>        所以

              橢圓方程為:                          ………………4分

             (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

             

              代入       ………………6分

              設(shè)   ①

                            ……………………8分

              設(shè)AB的中點(diǎn)為M,則

              。

               ……………………11分

              ,即存在這樣的直線l;

              當(dāng)時(shí), k不存在,即不存在這樣的直線l;……………………14分

           

           

           

           

          22.解:(I) ……………………2分

              令(舍去)

              單調(diào)遞增;

              當(dāng)單調(diào)遞減。    ……………………4分

              為函數(shù)在[0,1]上的極大值。        ……………………5分

             (II)由

           ①        ………………………7分

          設(shè),

          依題意知上恒成立。

          都在上單調(diào)遞增,要使不等式①成立,

          當(dāng)且僅當(dāng)…………………………11分

             (III)由

          ,則

          當(dāng)上遞增;

          當(dāng)上遞減;

                  …………………………16分

           

           

            <rt id="kqpjv"></rt>