欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(3)易知上為增函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數(shù)的單調性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當時, ,函數(shù)上單調遞增;

②當時,由可得,由解得

第三問,當時由(2)可知,上處取得最小值

時由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時,求的取值范圍是

 

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

時,單調遞減,在單調遞增,當,即時,,

第二問中,,則

,單調遞增,,,單調遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,

由(1)可知,的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

解:(1)時,單調遞減,在單調遞增,當,即時,,

                 …………4分

(2),則,

單調遞增,,單調遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,,

由(1)可知的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

 

查看答案和解析>>


同步練習冊答案