題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)
,當
時,
取得極
小值
.
(1)求
,
的值;
(2)設(shè)直線
,曲線
.若直線![]()
與曲線
同時滿足下列兩個條件:
①直線
與曲線
相切且至少有兩個
切點;
②對任意
都有
.則稱直線
為曲線
的“上夾線”.
試證明:直線
是曲線
的“上夾線”.
(3)記
,設(shè)
是方程
的實數(shù)
根,若對于
定義域中任意的
、
,當
,且
時,問是否存在一個最小的正整數(shù)
,使得
恒成立,若存在請求出
的值;若不存在請說明理由.
(本小題滿分14分)
已知函數(shù)
,當
時,
取得極小值
.
(1)求
,
的值;
(2)設(shè)直線
,曲線
.若直線
與曲線
同時滿足下列兩個條件:
①直線
與曲線
相切且至少有兩個切點;
②對任意
都有
.則稱直線
為曲線
的“上夾線”.
試證明:直線
是曲線
的“上夾線”.
(3)記
,設(shè)
是方程
的實數(shù)根,若對于
定義域中任意的
、
,當
,且
時,問是否存在一個最小的正整數(shù)
,使得
恒成立,若存在請求出
的值;若不存在請說明理由.
(本小題滿分14分)
已知函數(shù)
,當
時,
取得極小值
.
(1)求
,
的值;
(2)設(shè)直線
,曲線
.若直線
與曲線
同時滿足下列兩個條件:
①直線
與曲線
相切且至少有兩個切點;
②對任意
都有
.則稱直線
為曲線
的“上夾線”.
試證明:直線
是曲線
的“上夾線”.
(3)記
,設(shè)
是方程
的實數(shù)根,若對于
定義域中任意的
、
,當
,且
時,問是否存在一個最小的正整數(shù)
,使得
恒成立,若存在請求出
的值;若不存在請說明理由.
已知函數(shù)
當
時,
取得極小值
。
(1) 求
的值;
(2) 設(shè)直線
,曲線
,若直線
與曲線
同時滿足下列兩個條件:
(i) 直線
與曲線
相切且至少有兩個切點;
(ii) 對任意
都有
,則稱直線
為曲線
的“上夾線”。試證明:直線
是曲線
的“上夾線”。
(本題滿分14分)設(shè)橢圓
的左、右焦點分別為F1與
F2,直線
過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若
的周長為
。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換
變成曲線
,直線
與曲線
相切
且與橢圓C交于不同的兩點A、B,若
,求
面積的取值范圍。(O為坐標原點)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com