題目列表(包括答案和解析)
已知向量
,且
,A為銳角,求:
(1)角A的大。
(2)求函數(shù)
的單調(diào)遞增區(qū)間和值域.
【解析】第一問中利用
,解得
又A為銳角
![]()
第二問中,![]()
由
解得單調(diào)遞增區(qū)間為![]()
解:(1)
……………………3分
又A為銳角
……………………5分
(2)![]()
……………………8分
由
解得單調(diào)遞增區(qū)間為![]()
……………………10分
![]()
| f(x1)+f(x2) |
| 2 |
| 3 |
| 2 |
| g(x1)+g(x2) |
| 2 |
| 3 |
| 2 |
| lgx1+lgx2 |
| 2 |
| 3 |
| 2 |
| 1000 |
| x1 |
| 1000 |
| x1 |
| 1000 |
| x1 |
| g(x)+g(x2) |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
把函數(shù)
的圖象按向量
平移得到函數(shù)
的圖象.
(1)求函數(shù)
的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)
上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入
,便可以得到結(jié)論。第二問中,令
,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)
上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令
,……6分
則
……8分
,∴
,∴
在
上單調(diào)遞增.……10分
故
,即![]()
(本題滿分10分)
某次象棋比賽的決賽在甲乙兩名棋手之間進(jìn)行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分, 根據(jù)以往經(jīng)驗(yàn),每局甲贏的概率為
,乙贏的概率為
,且每局比賽輸贏互不影響.若甲第
局的得分記為
,令![]()
(Ⅰ)求
的概率;
(Ⅱ)若
=S2,求
的分布列及數(shù)學(xué)期望.
設(shè)函數(shù)
.
(I)求
的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時(shí),求函數(shù)
在區(qū)間
上的最小值.
【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到
.
.
令
,則
,所以
或
,得到結(jié)論。
第二問中,
(
).
.
因?yàn)?<a<2,所以
,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">. ………………………1分
.
令
,則
,所以
或
. ……………………3分
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以
.
令
,則
,所以
.
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為
,
單調(diào)遞減區(qū)間為
.
………………………7分
(II)
(
).
.
因?yàn)?<a<2,所以
,
.令
可得
.…………9分
所以函數(shù)
在
上為減函數(shù),在
上為增函數(shù).
①當(dāng)
,即
時(shí),
在區(qū)間
上,
在
上為減函數(shù),在
上為增函數(shù).
所以
. ………………………10分
②當(dāng)
,即
時(shí),
在區(qū)間
上為減函數(shù).
所以
.
綜上所述,當(dāng)
時(shí),
;
當(dāng)
時(shí),![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com