題目列表(包括答案和解析)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時(shí)
單調(diào)遞減;當(dāng)
時(shí)
單調(diào)遞增,故當(dāng)
時(shí),
取最小值![]()
于是對(duì)一切
恒成立,當(dāng)且僅當(dāng)
. 、
令
則![]()
當(dāng)
時(shí),
單調(diào)遞增;當(dāng)
時(shí),
單調(diào)遞減.
故當(dāng)
時(shí),
取最大值
.因此,當(dāng)且僅當(dāng)
時(shí),①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因?yàn)楹瘮?shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出
取最小值
對(duì)一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知函數(shù)
,其中
.
(1)若
在
處取得極值,求曲線
在點(diǎn)
處的切線方程;
(2)討論函數(shù)
在
的單調(diào)性;
(3)若函數(shù)
在
上的最小值為2,求
的取值范圍.
【解析】第一問(wèn),
因
在
處取得極值
所以,
,解得
,此時(shí)
,可得求曲線
在點(diǎn)
處的切線方程為:![]()
第二問(wèn)中,易得
的分母大于零,
①當(dāng)
時(shí),
,函數(shù)
在
上單調(diào)遞增;
②當(dāng)
時(shí),由
可得
,由
解得![]()
第三問(wèn),當(dāng)
時(shí)由(2)可知,
在
上處取得最小值
,
當(dāng)
時(shí)由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數(shù)
在
上的最小值為2時(shí),求
的取值范圍是![]()
已知函數(shù)
在
處取得極值2.
⑴ 求函數(shù)
的解析式;
⑵ 若函數(shù)
在區(qū)間
上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
【解析】第一問(wèn)中利用導(dǎo)數(shù)![]()
又f(x)在x=1處取得極值2,所以
,
所以![]()
第二問(wèn)中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得![]()
解:⑴ 求導(dǎo)
,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得
…………12分
.綜上所述,當(dāng)
時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)
時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是
或![]()
已知函數(shù)
,
(1)求函數(shù)
的定義域;
(2)求函數(shù)
在區(qū)間
上的最小值;
(3)已知
,命題p:關(guān)于x的不等式
對(duì)函數(shù)
的定義域上的任意
恒成立;命題q:指數(shù)函數(shù)
是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
【解析】第一問(wèn)中,利用由
即![]()
![]()
第二問(wèn)中,
,
得:
![]()
,
![]()
第三問(wèn)中,由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí),![]()
當(dāng)命題p為假,命題q為真時(shí),
,
所以![]()
在
中,滿足
,
是
邊上的一點(diǎn).
(Ⅰ)若
,求向量
與向量
夾角的正弦值;
(Ⅱ)若
,
=m (m為正常數(shù)) 且
是
邊上的三等分點(diǎn).,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一問(wèn)中,利用向量的數(shù)量積設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求
第二問(wèn)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,
=m所以
,![]()
(1)當(dāng)
時(shí),則
=
(2)當(dāng)
時(shí),則
=![]()
第三問(wèn)中,解:設(shè)
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以
即
于是
得![]()
從而![]()
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,
=m所以
,![]()
(1)當(dāng)
時(shí),則
=
;-2分
(2)當(dāng)
時(shí),則
=
;--2分
(Ⅲ)解:設(shè)
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以
即
于是
得![]()
從而
---2分
=
=![]()
=
…………………………………2分
令
,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時(shí),![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com