題目列表(包括答案和解析)
在△ABC中,a、b、c分別是角A、B、C的對邊,cosB=
.
⑴ 若cosA=-
,求cosC的值; ⑵
若AC=
,BC=5,求△ABC的面積.
【解析】第一問中sinB=
=
, sinA=
=![]()
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=
×
-(-
)×
=![]()
第二問中,由
=
+
-2AB×BC×cosB得 10=
+25-8AB
解得AB=5或AB=3綜合得△ABC的面積為
或![]()
解:⑴ sinB=
=
, sinA=
=
,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=
×
-(-
)×
=
……………………6分
⑵ 由
=
+
-2AB×BC×cosB得 10=
+25-8AB
………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,則S△ABC=
AB×BC×sinB=
×5×5×
=
………………10分
若AB=3,則S△ABC=
AB×BC×sinB=
×5×3×
=
……………………11分
綜合得△ABC的面積為
或![]()
如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點(diǎn),|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
![]()
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得
> 32 ,
∵x >2,∴
,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+
)
第二問,
當(dāng)且僅當(dāng)![]()
(3)令![]()
∴當(dāng)x
> 4,y′> 0,即函數(shù)y=
在(4,+∞)上單調(diào)遞增,∴函數(shù)y=
在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時y=
取得最小值,即SAMPN取得最小值27(平方米).
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com