題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
已知函數(shù)
.]
(1)求函數(shù)
的最小值和最小正周期;
(2)設(shè)
的內(nèi)角
、
、
的對(duì)邊分別為
,
,
,且
,
,
若
,求
,
的值.
【解析】第一問利用![]()
得打周期和最值
第二問
,由正弦定理,得
,①
由余弦定理,得
,即
,②
由①②解得![]()
如圖,點(diǎn)P為斜三棱柱ABC-A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥BB1交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.
(1)求證:CC1⊥MN.
(2)在任意△DEF中,
有由余弦定理DE2=DF2+EF2-2DF·EFcos∠DFE,拓展到空間,類比三角形的余弦定理,寫出一個(gè)斜三棱柱的三個(gè)側(cè)面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并加以證明.
如圖
是單位圓
上的點(diǎn),
分別是圓
與
軸的兩交點(diǎn),
為正三角形.
![]()
(1)若
點(diǎn)坐標(biāo)為
,求
的值;
(2)若
,四邊形
的周長(zhǎng)為
,試將
表示成
的函數(shù),并求出
的最大值.
【解析】第一問利用設(shè)
∵ A點(diǎn)坐標(biāo)為
∴
,
(2)中 由條件知 AB=1,CD=2 ,
在
中,由余弦定理得 ![]()
∴ ![]()
∵
∴
,
∴ 當(dāng)
時(shí),即
當(dāng)
時(shí) , y有最大值5. .
在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=
.
(Ⅰ)若△ABC的面積等于
,求a、b;
(Ⅱ)若
,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得
又因?yàn)椤鰽BC的面積等于
,所以
,得
聯(lián)立方程,解方程組得
.
第二問中。由于
即為即
.
當(dāng)
時(shí),
,
,
,
所以
當(dāng)
時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得
,………1分
又因?yàn)椤鰽BC的面積等于
,所以
,得
,………1分
聯(lián)立方程,解方程組得
.
……………2分
(Ⅱ)由題意得![]()
,
即
.
…………2分
當(dāng)
時(shí),
,
,
,
……1分
所以
………………1分
當(dāng)
時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,
;
所以![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com