題目列表(包括答案和解析)
由正弦定理知:在△ABC中,a∶b∶c=sinA∶sinB∶sinC.若A=30°,B=60°,則a∶b∶c=
1∶
∶2
1∶2∶4
2∶3∶4
1∶
∶2
由正弦定理可知:在△ABC中,a=2RsinA,b=2RsinB,c=2RsinC,其中R是△ABC外接圓的半徑.求證:acosB+bcosA=2RsinC.
正弦定理在解三角形中的作用:
(1)
如果已知三角形的任意兩個(gè)______與一_______,由三角形________,可以計(jì)算出三角形的另一________,并由正弦定理計(jì)算出三角形的另_______.(2)
如果已知三角形的任意________與基中一邊的______,應(yīng)用正弦定理,可以計(jì)算出另一邊的對(duì)角的_______,進(jìn)而確定這個(gè)_______和三角形其他的_______.正弦定理在解三角形中的作用:
(1)如果已知三角形的任意兩個(gè)______與一_______,由三角形________,可以計(jì)算出三角形的另一________,并由正弦定理計(jì)算出三角形的另_______.
(2)如果已知三角形的任意________與基中一邊的______,應(yīng)用正弦定理,可以計(jì)算出另一邊的對(duì)角的_______,進(jìn)而確定這個(gè)_______和三角形其他的_______.
在
中,
,分別是角
所對(duì)邊的長(zhǎng),
,且![]()
(1)求
的面積;
(2)若
,求角C.
【解析】第一問(wèn)中,由
又∵
∴
∴
的面積為![]()
第二問(wèn)中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com