題目列表(包括答案和解析)
某學(xué)生在證明等差數(shù)列前n項(xiàng)和公式時(shí),證法如下:
(1)當(dāng)n=1時(shí),S1=a1顯然成立。
(2)假設(shè)n=k時(shí),公式成立,即Sn=ka1+
。
當(dāng)n=k+1時(shí),
![]()
![]()
∴n=k+1時(shí)公式成立。
∴由(1)、(2)知,對n∈N,公式都成立。
以上證明錯誤的是( )
A.當(dāng)n取第一個(gè)值1時(shí),證明不對
B.歸納假設(shè)的寫法不對
C.從n=k到,n=k+1的推理中未用歸納假設(shè)
D.從n=k到n=k+1的推理有錯誤
(1)當(dāng)n=1時(shí),S1=a1顯然成立。
(2)假設(shè)n=k時(shí),公式成立,即Sn=ka1+
。
當(dāng)n=k+1時(shí),
![]()
![]()
∴n=k+1時(shí)公式成立。
∴由(1)、(2)知,對n∈N,公式都成立。
以上證明錯誤的是( )
A.當(dāng)n取第一個(gè)值1時(shí),證明不對
B.歸納假設(shè)的寫法不對
C.從n=k到,n=k+1的推理中未用歸納假設(shè)
D.從n=k到n=k+1的推理有錯誤
已知
是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若
,是否存在
,有
?請說明理由;
(Ⅱ)若
(a、q為常數(shù),且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若
試確定所有的p,使數(shù)列
中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請證明.
【解析】第一問中,由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)
反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
![]()
由
,得
![]()
當(dāng)
為奇數(shù)時(shí),此時(shí),一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時(shí),命題都成立
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若不等式
對任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價(jià)于
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時(shí),
,成立.
假設(shè)當(dāng)
時(shí),不等式
成立,
當(dāng)
時(shí),
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項(xiàng)公式
, …………10分
, …………12分
所以對
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com