題目列表(包括答案和解析)
已知函數(shù)f(x)(x∈R)滿足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列{an}滿足a1=
,an+1=f(an),bn=
-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數(shù)列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
如圖,
是△
的重心,
、
分別是邊
、
上的動點,且
、
、
三點共線.
(1)設(shè)
,將
用
、
、
表示;
(2)設(shè)
,
,證明:
是定值;
(3)記△
與△
的面積分別為
、
.求
的取值范圍.
(提示:![]()
![]()
【解析】第一問中利用(1)![]()
![]()
第二問中,由(1),得
;①
另一方面,∵
是△
的重心,
∴![]()
而
、
不共線,∴由①、②,得![]()
第三問中,![]()
由點
、
的定義知
,
,
且
時,
;
時,
.此時,均有
.
時,
.此時,均有
.
以下證明:
,結(jié)合作差法得到。
解:(1)![]()
.
(2)一方面,由(1),得
;①
另一方面,∵
是△
的重心,
∴
. ②
而
、
不共線,∴由①、②,得
解之,得
,∴
(定值).
(3)
.
由點
、
的定義知
,
,
且
時,
;
時,
.此時,均有
.
時,
.此時,均有
.
以下證明:
.(法一)由(2)知
,
∵
,∴
.
∵
,∴
.
∴
的取值范圍![]()
| π | 4 |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
| A、(1,1.5) |
| B、(1.5,2) |
| C、(2,3) |
| D、無法確定 |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com