題目列表(包括答案和解析)
| |||||||||||
(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,
是邊長為
的正方形,以
為圓心,
為半徑的圓弧與以
為直徑的半⊙O交于點
,延長
交
于
.
(1)求證:
是
的中點;(2)求線段
的長.
B.選修4-2:矩陣與變換
已知矩陣A
,其中
,若點
在矩陣A的變換下得到
.
(1)求實數(shù)
的值;
(2)矩陣A的特征值和特征向量.
C. 選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓
的極坐標方程為
,
(1)過極點的一條直線
與圓相交于
,A兩點,且∠
,求
的長.
(2)求過圓上一點
,且與圓相切的直線的極坐標方程;
D.選修4-5:不等式選講
已知實數(shù)
滿足
,求
的最小值;
(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,
是邊長為
的正方形,以
為圓心,
為半徑的圓弧與以
為直徑的半⊙O交于點
,延長
交
于
.
(1)求證:
是
的中點;(2)求線段
的長.
B.選修4-2:矩陣與變換
已知矩陣A
,其中
,若點
在矩陣A的變換下得到
.
(1)求實數(shù)
的值;
(2)矩陣A的特征值和特征向量.
C. 選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓
的極坐標方程為
,
(1)過極點的一條直線
與圓相交于
,A兩點,且∠
,求
的長.
(2)求過圓上一點
,且與圓相切的直線的極坐標方程;
D.選修4-5:不等式選講
已知實數(shù)
滿足
,求
的最小值;
已知m∈R,設(shè)條件p:不等式(m2-1)x2+(m+1)x+1≥0對任意的x∈R恒成立;條件q:關(guān)于x的不等式|x+1|+|x-2|<m的解集為Φ.
(1)分別求出使得p以及q為真的m的取值范圍;
(2)若復合命題“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內(nèi)?
(II)當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
![]()
【解析】本題主要考查函數(shù)的應用,導數(shù)及均值不等式的應用等,考查學生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得
> 32 ,
∵x >2,∴
,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+
)
第二問,
當且僅當![]()
(3)令![]()
∴當x
> 4,y′> 0,即函數(shù)y=
在(4,+∞)上單調(diào)遞增,∴函數(shù)y=
在[6,+∞]上也單調(diào)遞增.
∴當x=6時y=
取得最小值,即SAMPN取得最小值27(平方米).
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com