欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

于是當(dāng)時(shí).綜上所述.當(dāng)時(shí). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

已知冪函數(shù)滿足。

(1)求實(shí)數(shù)k的值,并寫(xiě)出相應(yīng)的函數(shù)的解析式;

(2)對(duì)于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問(wèn)中利用,冪函數(shù)滿足,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線開(kāi)口向下,對(duì)稱軸方程為:,結(jié)合二次函數(shù)的對(duì)稱軸,和開(kāi)口求解最大值為5.,得到

(1)對(duì)于冪函數(shù)滿足,

因此,解得,………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時(shí),

當(dāng)k=1時(shí),,綜上所述,k的值為0或1,!6分

(2)函數(shù),………………7分

由此要求,因此拋物線開(kāi)口向下,對(duì)稱軸方程為:,

當(dāng)時(shí),,因?yàn)樵趨^(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>

設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程!4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

 

查看答案和解析>>

函數(shù)概念的發(fā)展歷程

  17世紀(jì),科學(xué)家們致力于運(yùn)動(dòng)的研究,如計(jì)算天體的位置,遠(yuǎn)距離航海中對(duì)經(jīng)度和緯度的測(cè)量,炮彈的速度對(duì)于高度和射程的影響等.諸如此類(lèi)的問(wèn)題都需要探究?jī)蓚(gè)變量之間的關(guān)系,并根據(jù)這種關(guān)系對(duì)事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測(cè)它能達(dá)到的高度和射程.這正是函數(shù)產(chǎn)生和發(fā)展的背景.

  “function”一詞最初由德國(guó)數(shù)學(xué)家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國(guó),清代數(shù)學(xué)家李善蘭(1811~1882)在1859年和英國(guó)傳教士偉烈亞力合譯的《代徽積拾級(jí)》中首次將“function”譯做“函數(shù)”.

  萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標(biāo)、切線等.1718年,他的學(xué)生,瑞士數(shù)學(xué)家約翰·伯努利(J.Bernoulli,1667~1748)強(qiáng)調(diào)函數(shù)要用公式表示.后來(lái),數(shù)學(xué)家認(rèn)為這不是判斷函數(shù)的標(biāo)準(zhǔn).只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學(xué)家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.

  當(dāng)時(shí)很多數(shù)學(xué)家對(duì)于不用公式表示函數(shù)很不習(xí)慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.

  隨著對(duì)微積分研究的深入,18世紀(jì)末19世紀(jì)初,人們對(duì)函數(shù)的認(rèn)識(shí)向前推進(jìn)了.德國(guó)數(shù)學(xué)家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時(shí)提出:“如果對(duì)于x的每一個(gè)值,y總有一個(gè)完全確定的值與之對(duì)應(yīng),則y是x的函數(shù)”.這個(gè)定義較清楚地說(shuō)明了函數(shù)的內(nèi)涵.只要有一個(gè)法則,使得取值范圍中的每一個(gè)值,有一個(gè)確定的y和它對(duì)應(yīng)就行了,不管這個(gè)法則是公式、圖象、表格還是其他形式.19世紀(jì)70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進(jìn)而用更加嚴(yán)謹(jǐn)?shù)募虾蛯?duì)應(yīng)語(yǔ)言表述,這就是本節(jié)學(xué)習(xí)的函數(shù)概念.

  綜上所述可知,函數(shù)概念的發(fā)展與生產(chǎn)、生活以及科學(xué)技術(shù)的實(shí)際需要緊密相關(guān),而且隨著研究的深入,函數(shù)概念不斷得到嚴(yán)謹(jǐn)化、精確化的表達(dá),這與我們學(xué)習(xí)函數(shù)的過(guò)程是一樣的.

你能以函數(shù)概念的發(fā)展為背景,談?wù)剰某踔械礁咧袑W(xué)習(xí)函數(shù)概念的體會(huì)嗎?

1.探尋科學(xué)家發(fā)現(xiàn)問(wèn)題的過(guò)程,對(duì)指導(dǎo)我們的學(xué)習(xí)有什么現(xiàn)實(shí)意義?

2.萊布尼茲、狄利克雷等科學(xué)家有哪些品質(zhì)值得我們學(xué)習(xí)?

查看答案和解析>>


同步練習(xí)冊(cè)答案