欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).f(x)=
(
1
2
)
n
f(x+1)     (x<4)
(x≥4)
,則f(2+log23)的值等于(  )
A、
3
8
B、
1
24
C、
1
12
D、
1
8

查看答案和解析>>

已知函數(shù).f(x)=
x1+ex
+ln(1+ex)-x.
(I)求證:0<f(x)≤ln2;
(II)是否存在常數(shù)a使得當x>0時,f(x)>a恒成立?若存在,求a的取值范圍,若不存在,說明理由.

查看答案和解析>>

已知函數(shù)數(shù)學公式
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)記函數(shù)g(x)=x2[f′(x)+2x-2],若g(x)的最小值是-6,求函數(shù)f(x)的解析式.

查看答案和解析>>

已知函數(shù)數(shù)學公式.(a,b∈R)
( I)若f'(0)=f'(2)=1,求函數(shù)f(x)的解析式;
( II)若b=a+2,且f(x)在區(qū)間(0,1)上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù)數(shù)學公式
(1)求f(x)的定義域和值域;
(2)證明函數(shù)數(shù)學公式在(0,+∞)上是減函數(shù).

查看答案和解析>>

 

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                            ,

6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學被抽到的概率為

設(shè)有名男同學,則,男、女同學的人數(shù)分別為

(2)把名男同學和名女同學記為,則選取兩名同學的基本事件有種,其中有一名女同學的有

選出的兩名同學中恰有一名女同學的概率為

(3)

,

第二同學的實驗更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點   

    • <ul id="q0ho5"></ul>
      <address id="q0ho5"></address>
        <ul id="q0ho5"></ul>

        平面

        是棱的中點            

        平面

        平面平面

        (2)  

        同理

              

          

        ,       

        ,,    

         

        19.(本小題滿分14分)

        解:(1)由……①,得……②

        ②-①得:    

        所以,求得     

        (2),    

                                                             

         

         

        20.(本小題滿分14分)

        解:(1)由題設(shè)知:

        得:

        解得橢圓的方程為

        (2)

                    

        從而將求的最大值轉(zhuǎn)化為求的最大值

        是橢圓上的任一點,設(shè),則有

        ,

        時,取最大值   的最大值為

         

        21.(本小題滿分14分)

        解:(1)由,,得,

        所以,

        (2)由題設(shè)得

        對稱軸方程為,

        由于上單調(diào)遞增,則有

        (Ⅰ)當時,有

        (Ⅱ)當時,

        設(shè)方程的根為,

        ①若,則,有    解得

        ②若,即,有

                  

        由①②得 。

        綜合(Ⅰ), (Ⅱ)有 

         

        <abbr id="q0ho5"><th id="q0ho5"></th></abbr>