題目列表(包括答案和解析)
△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足
,求A。
【解析】本試題主要考查了解三角形的運用,
因為
![]()
【點評】該試題從整體來看保持了往年的解題風格,依然是通過邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運算得到A。
已知拋物線C:
與圓
有一個公共點A,且在A處兩曲線的切線與同一直線l
(I) 求r;
(II) 設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。
【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎(chǔ)上求解點到直線的距離。
【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學習也是一個需要練習的方向。
![]()
設(shè)點
是拋物線![]()
![]()
的焦點,
是拋物線
上的
個不同的點(![]()
).
(1) 當
時,試寫出拋物線
上的三個定點
、
、
的坐標,從而使得
;
(2)當
時,若
,
求證:
;
(3) 當
時,某同學對(2)的逆命題,即:
“若
,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù)
,試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè)
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因為
,所以
,
故可取![]()
![]()
滿足條件.
(2)設(shè)
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因為![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個當
時,該逆命題的一個反例.(反例不唯一)
② 設(shè)
,分別過
作
拋物線
的準線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因為上述表達式與點
的縱坐標無關(guān),所以只要將這
點都取在
軸的上方,則它們的縱坐標都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質(zhì)上只需構(gòu)造滿足條件且
的一組
個不同的點,均為反例.)
③ 補充條件1:“點
的縱坐標
(
)滿足
”,即:
“當
時,若
,且點
的縱坐標
(
)滿足
,則
”.此命題為真.事實上,設(shè)
,
分別過
作拋物線
準線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補充條件2:“點
與點![]()
為偶數(shù),
關(guān)于
軸對稱”,即:
“當
時,若
,且點
與點![]()
為偶數(shù),
關(guān)于
軸對稱,則
”.此命題為真.(證略)
如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA
底面ABCD,AC=
,PA=2,E是PC上的一點,PE=2EC。
![]()
(I)
證明PC
平面BED;
(II) 設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小
【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運用。
從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。
解法一:因為底面ABCD為菱形,所以BD
AC,又
![]()
![]()
![]()
![]()
【點評】試題從命題的角度來看,整體上題目與我們平時練習的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學生來說就是比較有點難度的,因此最好使用空間直角坐標系解決該問題為好。
(本小題滿分12分)
有編號為
,
,…
的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
![]()
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(ⅰ)用零件的編號列出所有可能的抽取結(jié)果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)=
=
.
(Ⅱ)(i)解:一等品零件的編號為
.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:
,
,共有6種.
所以P(B)=
.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com