題目列表(包括答案和解析)
(12分) 如圖,設(shè)P是圓x2+y2=25上的動點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=
PD.
![]()
(Ⅰ)當(dāng)P在圓上運(yùn)動時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為
的直線被C所截線段的長度.
(12分) 如圖1-5,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓+=1的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于P,A兩點(diǎn),其中點(diǎn)P在第一象限,過P作x軸的垂線,垂足為C,連結(jié)AC,并延長交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.
(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d;
(3)對任意的k>0,求證:PA⊥PB.
![]()
(12分) 如圖,設(shè)P是圓x2+y2=25上的動點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=
PD.![]()
(Ⅰ)當(dāng)P在圓上運(yùn)動時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為
的直線被C所截線段的長度.
(12分)設(shè)F1、F2分別為橢圓C:
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.試對雙曲線
寫出具有類似特性的性質(zhì),并加以證明.
圍.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com