題目列表(包括答案和解析)
已知![]()
(1)求函數(shù)
在
上的最小值
(2)對一切的
恒成立,求實數(shù)a的取值范圍
(3)證明對一切
,都有
成立
【解析】第一問中利用
當
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當![]()
,即
時,
,![]()
![]()
第二問中,
,則
設
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明
,
,
由(1)可知
,
的最小值為
,當且僅當x=
時取得
設
,
,則
,易得![]()
。當且僅當x=1時取得.從而對一切
,都有
成立
解:(1)
當
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當![]()
,即
時,
,![]()
…………4分
(2)
,則
設
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明
,
,
由(1)可知
,
的最小值為
,當且僅當x=
時取得
設
,
,則
,易得![]()
。當且僅當x=1時取得.從而對一切
,都有
成立
| 1 | 2 |
函數(shù)
和
為實常數(shù))是奇函數(shù),設
在
上的最大值為
. ⑴求
的表達式; ⑵求
的最小值.
| 1 |
| 2 |
已知函數(shù)
在
上是增函數(shù),
(1)求實數(shù)
的取值范圍;
(2)在(1)的結(jié)論下,設
,
,求函數(shù)
的最小值。
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com