欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.10題號一二三得分171819202122 分?jǐn)?shù) 一.選擇題(本大題12個小題,每小題5分,共60分)題號123456789101112選項 查看更多

 

題目列表(包括答案和解析)

某學(xué)校想要調(diào)查全校同學(xué)是否知道迄今為止獲得過諾貝爾物理獎的6位華人的姓名,為此出了一份考卷.該卷共有6個單選題,每題答對得20分,答錯、不答得零分,滿分120分.閱卷完畢后,校方公布每題答對率如下:
題號
答對率80%70%60%50%40%30%
則此次調(diào)查全體同學(xué)的平均分?jǐn)?shù)是    分.

查看答案和解析>>

某學(xué)校想要調(diào)查全校同學(xué)是否知道迄今為止獲得過諾貝爾物理獎的6位華人的姓名,為此出了一份考卷.該卷共有6個單選題,每題答對得20分,答錯、不答得零分,滿分120分.閱卷完畢后,校方公布每題答對率如下:
題號
答對率80%70%60%50%40%30%
則此次調(diào)查全體同學(xué)的平均分?jǐn)?shù)是    分.

查看答案和解析>>

某學(xué)校想要調(diào)查全校同學(xué)是否知道迄今為止獲得過諾貝爾物理獎的6位華人的姓名,為此出了一份考卷.該卷共有6個單選題,每題答對得20分,答錯、不答得零分,滿分120分.閱卷完畢后,校方公布每題答對率如下:
題號
答對率80%70%60%50%40%30%
則此次調(diào)查全體同學(xué)的平均分?jǐn)?shù)是________分.

查看答案和解析>>

(選做題)請考生在A、B、C三題中任選一題作答,如果多做,則按所做的第一題記分.作答時請寫清題號.
A.選修4-1(幾何證明選講)已知AD為圓O的直徑,直線BA與圓O相切與點A,直線OB與弦AC垂直并相交于點G,與弧AC相交于M,連接DC,AB=10,AC=12.
(Ⅰ)求證:BA•DC=GC•AD;(Ⅱ)求BM.
B.選修4-4(坐標(biāo)系與參數(shù)方程)求直線
x=1+4t
y=-1-3t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長.
C.選修4-5(不等式選講)(Ⅰ)求函數(shù)y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

本題有(I)、(II)、(III)三個選作題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知a∈R,矩陣P=
02
-10
,Q=
01
a0
,若矩陣PQ對應(yīng)的變換把直線l1:x-y+4=0變?yōu)橹本l2:x+y+4=0,求實數(shù)a的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,求圓C:ρ=2上的點P到直線l:ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5:不等式選講
已知實數(shù)x,y滿足x2+4y2=a(a>0),且x+y的最大值為5,求實數(shù)a的值.

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函數(shù),

方程=x2 + (m ? 2 )x + 1 = 0的兩個根在0至3之間

<m≤0

依題意得:m的取值范圍是:<m≤-1或m>0

18、解:(1),

當(dāng)a=1時 解集為

當(dāng)a>1時,解集為

當(dāng)0<a<1時,解集為;

(2)依題意知f(1)是f(x)的最小值,又f(1)不可能是端點值,則f(1)是f(x)的一個極小值,由

19、解:(1)當(dāng)所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由題意,不妨設(shè)A點在第一象限,坐標(biāo)為(t,-t2-t+5)其中,

則S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.,

(舍去),t2=1.

當(dāng),所以S(t)在上單調(diào)遞增,在上單調(diào)遞減,

所以當(dāng)t=1時,ABCD的面積取得極大值也是S(t)在上的最大值。

從而當(dāng)t=1時,矩形ABCD的面積取得最大值6.

20、解:

21、解:,

,要使在其定義域內(nèi)為單調(diào)函數(shù),只需內(nèi)滿足:恒成立.

① 當(dāng)時,,∵,∴,∴,

內(nèi)為單調(diào)遞減.  

② 當(dāng)時,,對稱軸為, ∴.

只需,即,,

內(nèi)為單調(diào)遞增。

 ③當(dāng)時,,對稱軸為.

只需,即恒成立.

綜上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

        由此可知

   (Ⅱ)由(I)可知當(dāng)時,有,

        即.

    .

  (Ⅲ) 設(shè)函數(shù)

       

        ∴函數(shù))上單調(diào)遞增,在上單調(diào)遞減.

        ∴的最小值為,即總有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案