△ABC中,AB=AC,∠BAC=120°,D為BC上的一點(diǎn),DE垂直AB于點(diǎn)E答案解析
科目:czsx
來源:百分學(xué)生作業(yè)本課時3練1測七年級數(shù)學(xué)(下) 華東師大版
題型:022
|
|
請閱讀下面的材料:
如圖(1)所示,在等邊三角形ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD= BC= AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.
請根據(jù)從上面材料中所得的信息解答下列問題:



| (1) |
|
在△ABC中,∠A∶∠B∶∠C=1∶2∶3,CD⊥AB于D,AB=a,則BD=________.
|
|
(2) |
|
如圖(2)所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于D,垂足為E,當(dāng)BD=5 cm,∠B=30°時,△ACD的周長=________;
|
|
(3) |
|
如圖(3)所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,那么BE∶EA=________.
|
|
(4) |
|
如圖(4)所示,在△ABC中,∠C=90°,∠B=15°,DM是AB的垂直平分線,BD=8 cm,則AC=________;
|
|
(5) |
|
如圖(5)所示,在等邊三角形ABC中,D、E分別是BC、AC上的點(diǎn),且∠1=∠2,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并簡要說明理由.
|
|
|
查看答案和解析>>
科目:czsx
來源:
題型:
如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,
BD=CD=AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,則BC=
;
(2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時,△ACD的周長=
15cm
15cm
.
(3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA=
3:1
3:1
.
(4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且∠CAD=∠ABE,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,
.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,則BC=______;
(2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時,△ACD的周長=______.
(3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA=______.
(4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且∠CAD=∠ABE,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:czsx
來源:不詳
題型:解答題
如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,
BD=CD=AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,則BC=______;
(2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時,△ACD的周長=______.
(3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA=______.
(4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且∠CAD=∠ABE,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:czsx
來源:2015-2016學(xué)年江蘇省吳江市八年級上學(xué)期期中測試數(shù)學(xué)試卷(解析版)
題型:解答題
如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=
AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=
,則BC= ;
(2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時,△ACD的周長= .
(3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA= .
(4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且∠CAD=∠ABE,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
5.如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=$\frac{1}{2}$AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時,△ACD的周長=15cm.
(2)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA=3:1.
(3)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且AE=DC,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,若BP=2,求BQ的長.
查看答案和解析>>