在△ABC中.角A.B.C的對(duì)邊分別是a.b.c.已知a=3,b= ,C=60°.求c,A,B答案解析
科目:czsx
來源:
題型:
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則co

sA=
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA (1)
同理可得:b
2=a
2+c
2-2accosB (2)
c
2=a
2+b
2-2abcosC (3)
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3
,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:
題型:

在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB,垂足為點(diǎn)D,則cosA=
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2,b
2-b
2cos
2A=a
2-(c-bcosA)
2,
整理得a
2=b
2+c
2-2bccosA. ①
同理可得b
2=a
2+c
2-2accosB. ②
C
2=a
2+b
2-2abcosC. ③
這個(gè)結(jié)論就是著名的余弦定理.在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
(1)在銳角△ABC中,已知∠A=60°,b=5,c=7,試?yán)芒?,②,③求出a,∠B,∠C,的數(shù)值;
(2)已知在銳角△ABC中,三邊a,b,c分別是7,8,9,求出∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則co
sA=
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB,垂足為點(diǎn)D,則cosA=
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2,
整理得a2=b2+c2-2bccosA. ①
同理可得b2=a2+c2-2accosB. ②
C2=a2+b2-2abcosC. ③
這個(gè)結(jié)論就是著名的余弦定理.在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
(1)在銳角△ABC中,已知∠A=60°,b=5,c=7,試?yán)芒?,②,③求出a,∠B,∠C,的數(shù)值;
(2)已知在銳角△ABC中,三邊a,b,c分別是7,8,9,求出∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第1章《直角三角形的邊角關(guān)系》中考題集(23):1.4 船有觸角的危險(xiǎn)嗎(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第7章《銳角三角函數(shù)》中考題集(28):7.5 解直角三角形(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第1章《解直角三角形》中考題集(30):1.3 解直角三角形(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第28章《銳角三角函數(shù)》中考題集(32):28.2 解直角三角形(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第1章《解直角三角形》中考題集(22):1.4 解直角三角形(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第21章《解直角三角形》中考題集(22):21.4 解直角三角形(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第31章《銳角三角函數(shù)》中考題集(28):31.3 銳角三角函數(shù)的應(yīng)用(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第4章《銳角三角形》中考題集(26):4.3 解直角三角形及其應(yīng)用(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第25章《解直角三角形》中考題集(26):25.3 解直角三角形(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:第25章《解直角三角形》中考題集(26):25.3 解直角三角形及其應(yīng)用(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:2009年陜西省中考模擬數(shù)學(xué)試卷(2)(金臺(tái)中學(xué) 楊宏舉)(解析版)
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB,垂足為點(diǎn)D,則cosA=

,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2,b
2-b
2cos
2A=a
2-(c-bcosA)
2,
整理得a
2=b
2+c
2-2bccosA. ①
同理可得b
2=a
2+c
2-2accosB. ②
C
2=a
2+b
2-2abcosC. ③
這個(gè)結(jié)論就是著名的余弦定理.在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
(1)在銳角△ABC中,已知∠A=60°,b=5,c=7,試?yán)芒?,②,③求出a,∠B,∠C,的數(shù)值;
(2)已知在銳角△ABC中,三邊a,b,c分別是7,8,9,求出∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:新疆自治區(qū)中考真題
題型:解答題
在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,如圖所示,過C作CD⊥AB于D,則

,即AD=bcosA。
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2
∴b
2-b
2cos
2A=a
2-(c-bcosA)
2
整理得:a
2=b
2+c
2-2bccosA (1)
同理可得:b
2=a
2+c
2-2accosB (2)
c
2=a
2+b
2-2abcosC (3)
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素。
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=

,∠B,∠C則可由式子(2)、(3)分別求出,在此略,根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù)。(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(06)(解析版)
題型:解答題
(2007•新疆)在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:2007年新疆建設(shè)兵團(tuán)中考數(shù)學(xué)試卷(解析版)
題型:解答題
(2007•新疆)在銳角△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=

,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2=AC
2-AD
2=BC
2-BD
2∴b
2-b
2cos
2A=a
2-(c-bcosA)
2整理得:a
2=b
2+c
2-2bccosA
同理可得:b
2=a
2+c
2-2accosB
c
2=a
2+b
2-2abcosC
這個(gè)結(jié)論就是著名的余弦定理,在以上三個(gè)等式中有六個(gè)元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個(gè)元素,可求出其余的另外三個(gè)元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a
2=3
2+6
2-2×3×6cos60°=27
∴a=3

,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請(qǐng)你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))
查看答案和解析>>
科目:czsx
來源:
題型:閱讀理解

閱讀下列材料,并解決后面的問題.
在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c.過A作AD⊥BC于D(如圖),則sinB=
,sinC=
,即AD=csinB,AD=bsinC,于是csinB=bsinC,
即
=.同理有
=,
=.
所以
==…(*)
即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等.
(1)在銳角三角形中,若已知三個(gè)元素a、b、∠A,運(yùn)用上述結(jié)論(*)和有關(guān)定理就可以求出其余三個(gè)未知元素c、∠B、∠C,請(qǐng)你按照下列步驟填空,完成求解過程:
第一步:由條件a、b、∠A
∠B;
第二步:由條件∠A、∠B
∠C;
第三步:由條件
c.
(2)如圖,已知:∠A=60°,∠C=75°,a=6,運(yùn)用上述結(jié)論(*)試求b.
查看答案和解析>>
科目:czsx
來源:
題型:044
閱讀下列材料,并解決后面的問題.
在銳角
△ABC中,
∠A、
∠B、
∠C的對(duì)邊分別是
a、
b、
c.
過A作AD⊥BC于D(如圖),

則 sinB=
,sinC=
,
即AD=csinB,AD=bsinC,
于是csinB=bsinC,
即
.
同理有
,
.
所以
………(*)
即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等.
(1
)在銳角三角形中,若已知三個(gè)元素
a、
b、
∠A,運(yùn)用上述結(jié)論
(*)和有關(guān)定理就可以求出其余三個(gè)未知元素
c、
∠B、
∠C,請(qǐng)你按照下列步驟填空,完成求解過程:
第一步:由條件 a、b、∠A
∠B;
第二步:由條件 ∠A、∠B
∠C;
第三步:由條件
c.
(2
)如圖,已知:
∠A=60°,
∠C=75°,
a=6,運(yùn)用上述結(jié)論
(*)試求
b.

查看答案和解析>>