三角形ACB為等腰直角三角形,角ACB=90°,AC=BC,AE平分角BAC,BD垂直AE,垂足為D求證CD=BD答案解析
科目:czsx
來源:
題型:

28、在等腰直角△ABC中,∠C=90°,AC=BC,D是AB上任一點,AE⊥CD于E,BF⊥CD交CD延長線于F,CH⊥AB于H,交AE于G.求證:(1)BD=CG;(2)DF=GE.
查看答案和解析>>
科目:czsx
來源:
題型:
在等腰直角△ABC中,∠C=90°,AC=BC,AB=3,點D是AB上一動點,連接CD.若
CD=,則∠ACD=
15°或75
15°或75
°.
查看答案和解析>>
科目:czsx
來源:不詳
題型:解答題
在等腰直角△ABC中,∠C=90°,AC=BC,D是AB上任一點,AE⊥CD于E,BF⊥CD交CD延長線于F,CH⊥AB于H,交AE于G.求證:(1)BD=CG;(2)DF=GE.
查看答案和解析>>
科目:czsx
來源:
題型:解答題
在等腰直角△ABC中,∠C=90°,AC=BC,D是AB上任一點,AE⊥CD于E,BF⊥CD交CD延長線于F,CH⊥AB于H,交AE于G.求證:(1)BD=CG;(2)DF=GE.
查看答案和解析>>
科目:czsx
來源:
題型:填空題
在等腰直角△ABC中,∠C=90°,AC=BC,AB=3,點D是AB上一動點,連接CD.若
,則∠ACD=________°.
查看答案和解析>>
科目:czsx
來源:
題型:
直角三角形紙片ABC中,∠ACB=90°,AC≤BC,如圖,將紙片沿某條直線折疊,使點A落在直角邊BC上,記落點為D,設折痕與AB、AC邊分別交于點E、點F.探究:如果折疊后的△CDF與△BDE均為等腰三角形,那么紙片中∠B的度數(shù)是多少?寫出你的計算過程,并畫出符合條件的折疊后的圖形.
查看答案和解析>>
科目:czsx
來源:
題型:
已知:如圖,Rt△ABC中,∠ACB=90°,AC=BC,將直角三角板中45°角的頂點放在點C處,并將三角板繞點C旋轉,三角板的兩邊分別交AB邊于D、E兩點(點D在點E的左側,并且

點D不與點A重合,點E不與點B重合),設AD=m,DE=x,BE=n.
(1)判斷以m、x、n為三邊長組成的三角形的形狀,并說明理由;
(2)當三角板旋轉時,找出AD、DE、BE三條線段中始終最長的線段,并說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰直角三角形,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊重疊為止,此時這個三角形的斜邊長為
.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,等腰直角三角形ABC中,∠ACB=90°,AC=BC,M是△ABC內任意一點,連結MC并延長到E,使得CE=CM,以MA、MB為鄰邊做?MADB,對角線交點為F,連接DE.
(1)求證:①DE⊥AB;②DE=AB;
(2)若△ABC為等邊三角形,猜想(1)中的兩個結論是否成立?若成立,直接寫出結論;若不成立,請直接寫出你的猜想結果.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( ?。?/div>
查看答案和解析>>
科目:czsx
來源:
題型:

20、已知:如圖,Rt△ABC中,∠ACB=90°,AC=BC,點D為AB邊上一點,且不與A、B兩點重合,AE⊥AB,AE=BD,連接DE、DC.
(1)求證:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,在△ABC中,∠ACB=90°,AC=BC=2,以BC為一邊,在△ABC的外部作△BCE,使△BCE是等腰直角三角形,求線段AE的長.
查看答案和解析>>
科目:czsx
來源:
題型:

(2013•吉林)如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為直角邊作等腰三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AC=3cm,則BE=
cm.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為直角邊作等腰三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=3cm,則BE=
6
6
cm.
(3)BE與AD有何位置關系?請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:

如圖,△ABC中,∠ACB=90°,AC=BC=2,取斜邊的中點,向斜邊做垂線,畫出一個新的等腰直角三角形,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊重疊為止,此時這個三角形的斜邊長為
.
查看答案和解析>>
科目:czsx
來源:
題型:
(2012•泰州一模)已知Rt△ABC,∠ACB=90°,AC=BC=4,點O是AB中點,點P、Q分別從點A、C出發(fā),沿AC、CB以每秒1個單位的速度運動,到達點C、B后停止.連接PQ、點D是PQ中點,連接CD并延長交AB于點E.
(1)試說明:△POQ是等腰直角三角形;
(2)設點P、Q運動的時間為t秒,試用含t的代數(shù)式來表示△CPQ的面積S,并求出S的最大值;
(3)如圖2,點P在運動過程中,連接EP、EQ,問四邊形PEQC是什么四邊形,并說明理由;
(4)求點D運動的路徑長(直接寫出結果).

查看答案和解析>>
科目:czsx
來源:浙江省2013屆八年級上學期期末考試數(shù)學卷
題型:選擇題
如圖,△ABC中,∠ACB = 90°,AC=BC=1,取斜邊中點,向斜邊做垂線,畫出一個新的等腰直角三角形,此時這個三角形的斜邊與BC垂直.如此繼續(xù)下去,直到所畫直角三角形的斜邊再次與△ABC的BC邊垂直為止,此時這個三角形的直角邊長為 .

(第18題)
查看答案和解析>>
科目:czsx
來源:2015屆北京市七年級下學期期末考試數(shù)學試卷(解析版)
題型:解答題
如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為直角邊作等腰三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=3cm,則BE=
cm;
(3)BE與AD有何位置關系?請說明理由.
查看答案和解析>>
科目:czsx
來源:
題型:
如圖,△ABC中,∠ACB = 90°,AC=BC=1,取斜邊中點,向斜邊做垂線,畫出一個新的等腰直角三角形,此時這個三角形的斜邊與BC垂直.如此繼續(xù)下去,直到所畫直角三角形的斜邊再次與△ABC的BC邊垂直為止,此時這個三角形的直角邊長為
.

(第18題)
查看答案和解析>>
科目:czsx
來源:2011-2012學年河北保定市八年級第二學期期末數(shù)學試卷(解析版)
題型:填空題
如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊做垂線,畫出一個新的等腰直角三角形,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊重疊為止,此時這個三角形的斜邊長為__________.

查看答案和解析>>