科目:czsx 來源: 題型:
科目:czsx 來源:數(shù)學(xué)教研室 題型:044
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對(duì)邊所得的線段與兩
邊對(duì)應(yīng)成比例。
已知:如圖,在△ABC中,AD是角平分線。
求證:
=
。
![]()
分析:要證
=
,一般只要證BD、DC與AB、AC
或BD、AB與DC、AC所在的三角形相似即可,現(xiàn)在點(diǎn)B、D、C
在一條直線上,△ABD與△ADC不相似,需要考慮用別的方法換比。在比例式![]()
=
中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過點(diǎn)C作CE//AD,交
BA的延長(zhǎng)線于點(diǎn)E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明
=![]()
就可以轉(zhuǎn)化成證AE=AC。
證明:過點(diǎn)C作CE//DA交BA的延長(zhǎng)線于點(diǎn)E。
。
(1)在上述證明過程中,用到了哪些定理?(寫對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過程中,主要利用到了下列三種數(shù)學(xué)思想中的哪一種?選出一
個(gè)填在后面的括號(hào)內(nèi)………………………………………………………………( )
A. 數(shù)形結(jié)合思想 B. 轉(zhuǎn)化思想 C. 分類討論思想
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題。
如下圖,已知在△ABC中,AD是角平分線,AB=5cm,AC=4cm,
BC=7cm,求BD的長(zhǎng)。
![]()
科目:czsx 來源:北京期中題 題型:證明題
科目:czsx 來源:2008-2009學(xué)年北京市八一中學(xué)九年級(jí)(上)期中數(shù)學(xué)模擬試卷(解析版) 題型:解答題
科目:czsx 來源: 題型:
復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“如下圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP?!?/p>
![]()
(1)小亮是個(gè)愛動(dòng)腦筋的同學(xué),他通過對(duì)圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP。請(qǐng)你幫小亮完成證明。
(2)之后,小亮又將點(diǎn)P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請(qǐng)你就圖②給出證明。若不成立,請(qǐng)說明理由。
科目:czsx 來源:2009年浙江省湖州市中考數(shù)學(xué)試題 題型:047
如下圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:△BED≌△CFD;
(2)若∠A=90°,求證:四邊形DFAE是正方形.
科目:czsx 來源:四川省期末題 題型:填空題
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:
| 1 | 3 |
科目:czsx 來源: 題型:
| AD |
| DB |
| 2 |
| 3 |
| AB |
| a |
| BC |
| b |
| EA |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
科目:czsx 來源: 題型:
| 4 | 5 |
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com