欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 試題搜索列表 >橢圓斜率的取值范圍

橢圓斜率的取值范圍答案解析

科目:gzsx 來源: 題型:

如圖,在直角坐標(biāo)系xOy中有一直角梯形ABCD,AB的中點為O,AD⊥AB,AD∥BC,AB=4,BC=3,AD=1,以A,B為焦點的橢圓經(jīng)過點C.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點E(0,1),問是否存在直線l與橢圓交于M,N兩點且|ME|=|NE|,若存在,求出直線l的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0 )的左、右焦點,其左準(zhǔn)線與x軸相交于點N,并且滿足,
F1F2
=2
NF1
,|
F1F2
|=2
.設(shè)A、B是上半橢圓上滿足
NA
=λ
NB
的兩點,其中λ∈[
1
5
1
3
].
(1)求此橢圓的方程及直線AB的斜率的取值范圍;
(2)設(shè)A、B兩點分別作此橢圓的切線,兩切線相交于一點P,求證:點P在一條定直線上,并求點P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C1的方程為
x24
+y2=1
,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)設(shè)過定點M(0,2)的直線l與橢圓C1交于不同的兩點A、B,且滿足|OA|2+|OB|2>|AB|2,(其中O為原點),求l斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

精英家教網(wǎng)如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點為F1、F2,短軸兩個端點為A、B.已知|
OB
|
、|
F1B
|
、
|F1F2
|
成等比數(shù)列,|
F1B
|
-
|F1F2
|
=2,與x軸不垂直的直線l與C交于不同的兩點M、N,記直線AM、AN的斜率分別為k1、k2,且k1•k2=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)求證直線l與y軸相交于定點,并求出定點坐標(biāo);
(Ⅲ)當(dāng)弦MN的中點P落在四邊形F1AF2B內(nèi)(包括邊界)時,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是橢圓C的左準(zhǔn)線與x軸的交點,過點P的直線l與橢圓C相交于M,N兩點,當(dāng)線段MN的中點落在正方形Q內(nèi)(包括邊界)時,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

設(shè)直線l:y=kx+m與x軸、y軸正半軸分別交于A、B兩點,M、N是直線l上兩點且
AM
=
MN
=
NB
,曲線C過點M、N.
(1)若曲線C的方程是x2+y2=20,求直線l的方程;
(2)若曲線C是中心在原點、焦點在x軸上的橢圓且離心率e∈(0,
3
2
)
,求直線l斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>O),橢圓C焦距為:2c,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(I)求橢圓c的方程;
(II)設(shè)點P(-
a2
c
,0),過點P的直線l與橢圓C相交于M,N兩點,當(dāng)線段MN的中點落在正方形Q內(nèi)(包括邊界)時,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知直線(1+3m)x-(3-2m)y-(1+3m)=0(m∈R)所經(jīng)過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為3.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點F的直線l交橢圓于A、B兩點,若
12
5
≤|FA|•|FB|≤
18
7
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
2
=0
相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P(4,0),M,N是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PN交橢圓C于另一點E,求直線PN的斜率的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明直線ME與x軸相交于定點.

查看答案和解析>>

科目:gzsx 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知三點A(-1,0),B(1,0),C(-1,
3
2
),以A、B為焦點的橢圓經(jīng)過點C.
(I)求橢圓的方程;
(II)設(shè)點D(0,1),是否存在不平行于x軸的直線l與橢圓交于不同兩點M、N,使(
DM
+
DN
)•
MN
=0
?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由;
(III)若對于y軸上的點P(0,n)(n≠0),存在不平行于x軸的直線l與橢圓交于不同兩點M、N,使(
PM
+
PN
)•
MN
=0
,試求n的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點,其左準(zhǔn)線與x軸相交于點N,并且滿足,
F1F2
=2
NF1
,|
F1F2
|=2

(1)求此橢圓的方程;
(2)設(shè)A、B是這個橢圓上的兩點,并且滿足
NA
NB
,當(dāng)λ∈[
1
5
1
3
]
時,求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F(1,0),離心率為
1
2
.過點F的直線l交橢圓C于A,B兩點,且
27
11
≤|FA|•|FB|≤3

(1)求橢圓C的方程;
(2)求直線l的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,F(xiàn)1,F(xiàn)2是其左右焦點,離心率為
6
3
,且經(jīng)過點(3,1)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若A1,A2分別是橢圓長軸的左右端點,Q為橢圓上動點,設(shè)直線A1Q斜率為k,且k∈(-
1
2
,  -
1
3
 )
,求直線A2Q斜率的取值范圍;
(3)若Q為橢圓上動點,求cos∠F1QF2的最小值.

查看答案和解析>>

科目:gzsx 來源: 題型:

橢圓C:
x2
4
+
y2
3
=1
的左、右頂點分別為A1、A2,點P在C上且直線PA2斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是( ?。?/div>

查看答案和解析>>

科目:gzsx 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點M(2,0),直線l:y=1,過M任作一條不與y軸重合的直線l1與橢圓相交于A、B兩點,過AB的中點N作直線l2與y軸交于點P,D為N在直線l上的射影,若|ND|、
1
2
|AB|
、|MP|成等比數(shù)列,求直線l2的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,短軸的一個端點到右焦點的距離為
3

(1)求橢圓C的方程;
(2)設(shè)過點(0,2)直線l與C交于A,B,若∠AOB為銳角,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形.
(1)求橢圓C的方程;
(2)設(shè)P(-4,0),過點P的直線l與橢圓C相交于M,N兩點,當(dāng)線段MN的中點落在正方形內(nèi)(包括邊界)時,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點,已知點N(-
a2
c
,0)
,滿足
F1F2
=2
NF1
且|
F1F2
|=2
,設(shè)A、B是上半橢圓上滿足
NA
NB
的兩點,其中λ∈[
1
5
,
1
3
]

(1)求此橢圓的方程;
(2)求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:gzsx 來源: 題型:

(2008•河西區(qū)三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,又橢圓C與y軸正半軸交于B點,右準(zhǔn)線與x軸交于D點,且
FD
=(2,0),
BF
FD
=4,過點D作直線l交橢圓C于不同兩點P,Q.
(1)求橢圓C的方程;
(2)求直線l斜率的取值范圍;
(3)若在x軸上的點M(m,0),使|
MP
|=|
MQ
|,求m的取值范圍.

查看答案和解析>>