長(zhǎng)山中學(xué)2008級(jí)第二學(xué)期第一學(xué)段
數(shù)學(xué)試題
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,第I卷第I至第2頁,第II卷第3至第5頁
全卷滿分100分,考試時(shí)間90分鐘
一、選擇題:本卷共15小題,每小題3分,共45分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)把符合要求的選項(xiàng)涂填在答題卡上.
1.已知數(shù)列
則
是這個(gè)數(shù)列的( )
(A) 第六項(xiàng) (B) 第七項(xiàng) (C) 第八項(xiàng) (D)第九項(xiàng)
2.等差數(shù)列
的前
項(xiàng)和為
,若
則
( )
(A) 55 (B)
3.在△ABC中,
,則A等于 ( )
(A)30° (B) 45° (C) 60° (D) 120°
4.在
中,已知
,則
( 。
(A)2; (B)1; (C)
; (D)
.
5.已知
是公比為
的等比數(shù)列,且
成等差數(shù)列,則
等于( 。
(A)1; (B)-2; (C)
; (D)1或
.
6.將9個(gè)數(shù)排成如下圖所示的數(shù)表,若每行3個(gè)數(shù)按從左至右的順序構(gòu)成等差數(shù)列,每列的
3個(gè)數(shù)按從上到下的順序也構(gòu)成等差數(shù)列,且表正中間一個(gè)數(shù)a22=2,則表中所有數(shù)之和
為 ( )
![]()
(A) 20 (B) 18 (C) 512 (D) 不確定的數(shù)
7.在△ABC中,![]()
![]()
分別是∠A、∠B、∠C的對(duì)邊,且
,
則∠A等于( )
(A) 60° (B) 30° (C) 120° (D) 150°
8.在數(shù)列
中,已知
則
等于( )
(A)
(B)
(C)
(D)
![]()
9.設(shè)
,那么數(shù)列a、b、c是 ( )
(A) 是等差數(shù)列但不是等比數(shù)列 (B) 是等比數(shù)列但不是等差數(shù)列
(C) 既是等比數(shù)列又是等差數(shù)列 (D) 既不是等比數(shù)列又不是等差數(shù)列
11.某人朝正東方向走
千米后,向右轉(zhuǎn)
并走
千米,
那么
的值為 ( )
(A)
(B)
(C)
或
(D) 3
12.在
中,若
,則
是 ( )
(A) 直角三角形 (B) 等腰三角形
(C) 等腰或直角三角形 (D) 鈍角三角形
13.在△ABC中,若
,則最大角的余弦是(
)
(A)
(B)
(C)
(D)
14.已知等比數(shù)列
的前n項(xiàng)和為
,且
,則![]()
的值是 ( )
(A) 54 (B)
15.等差數(shù)列
中,
,
,且
,
為其前
項(xiàng)之和,則( )
(A)
都小于零,
都大于零
(B)
都小于零,
都大于零
(C)
都小于零,
都大于零
(D)
都小于零,
都大于零
二、填空題:本大題共5小題,每小題4分,共20分
16.若數(shù)列
的前
項(xiàng)和
,則此數(shù)列的通項(xiàng)公式為
17.在
中,
,則
18.在
中,三個(gè)內(nèi)角
成等差數(shù)列,對(duì)應(yīng)三邊
、
、
成等比數(shù)列,
則
的形狀是 .
19.給定
,則使
為整數(shù)的最小正整數(shù)
的值
是
20.等差數(shù)列
中,
是它的前
項(xiàng)之和,且
,
,則
①數(shù)列的公差
②
一定小于![]()
③
是各項(xiàng)中最大的一項(xiàng) ④
一定是
n中的最大值
其中正確的是_______________________(填入你認(rèn)為正確的所有序號(hào)).
21(本小題滿分6分)
三、解答題(本大題共5小題,共35分。解答應(yīng)寫出文字說明、證明過程或演算步驟)山學(xué)業(yè)水平測(cè)試題.files/image169.gif)
已知
的周長(zhǎng)為
,且
.
(I)求邊
的長(zhǎng);
(II)若
的面積為
,求角
的度數(shù).
22.(本題滿分7分)
已知
是等差數(shù)列,其中![]()
(Ⅰ)求
的通項(xiàng);
(Ⅱ)數(shù)列
從哪一項(xiàng)開始小于0;
(Ⅲ)求
值。
23(本題滿分7分)
在△ABC中,
分別是
的對(duì)邊,且![]()
![]()
(Ⅰ)求角B的大小;
(Ⅱ)若
,求
的值;![]()
24.(本小題滿分7分)
在等比數(shù)列
中,
.
(I)求數(shù)列
的通項(xiàng)公式;
(II)若數(shù)列
的公比大于
,且
,求數(shù)列
的前
項(xiàng)和
.
25(本題滿分8分)
設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對(duì)于所有的n
N+,都有
。
(Ⅰ)寫出數(shù)列{an}的前3項(xiàng);
(Ⅱ)證明數(shù)列{an}是等差數(shù)列,并求其通項(xiàng)公式(寫出推證過程);
(Ⅲ)設(shè)
,
是數(shù)列{bn}的前n項(xiàng)和,求使得
對(duì)所有n
N+都成立的最小正整數(shù)
的值。
長(zhǎng)山中學(xué)2008級(jí)第二學(xué)期第一學(xué)段
一、選擇題
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
B
B
A
B
D
B
C
C
A
B
C
A
C
D
C
二、填空題
16.
;17.
;18等邊三角形;19.3;20.①②④
三、解答題
21解(I)由題意及正弦定理,得
①,
②,………………1分
兩式相減,得
. …………………2分
(II)由
的面積
,得
,……4分
由余弦定理,得
……………5分
所以
. …………6分
22 .解:(Ⅰ)
……2分
(Ⅱ)
∴數(shù)列
從第10項(xiàng)開始小于0
……4分
(Ⅲ)山學(xué)業(yè)水平測(cè)試題.files/image247.gif)
山學(xué)業(yè)水平測(cè)試題.files/image249.gif)
山學(xué)業(yè)水平測(cè)試題.files/image251.gif)
山學(xué)業(yè)水平測(cè)試題.files/image253.gif)
山學(xué)業(yè)水平測(cè)試題.files/image255.gif)
23解:(Ⅰ)由
得
即:山學(xué)業(yè)水平測(cè)試題.files/image259.gif)
∴
…………2分
而
又山學(xué)業(yè)水平測(cè)試題.files/image265.gif)
而
…………4分
(Ⅱ)利用余弦定理
可解得:
,∵
,故有
或
…………7分
24解:(I)設(shè)等比數(shù)列{an}的公比為q, 則q≠0, a2= = , a4=a3q=2q
所以 + 2q= , 解得q1= , q2= 3, …………1分
當(dāng)q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.
當(dāng)q=3時(shí), a1=
,所以an=
×
=2×3n-5.
…………3分
(II)由(I)及數(shù)列
公比大于
,得q=3,an=2×3n-5 ,…………4分
,
(常數(shù)),
.
所以數(shù)列
為首項(xiàng)為-4,公差為1的等差數(shù)列,……6分
. …………7分
25.解:(Ⅰ) n=1時(shí)
∴山學(xué)業(yè)水平測(cè)試題.files/image296.gif)
n=2時(shí)
∴山學(xué)業(yè)水平測(cè)試題.files/image300.gif)
n=3時(shí)
∴
…………2分
(Ⅱ)∵
∴山學(xué)業(yè)水平測(cè)試題.files/image308.gif)
兩式相減得:
即山學(xué)業(yè)水平測(cè)試題.files/image312.gif)
也即山學(xué)業(yè)水平測(cè)試題.files/image314.gif)
∵
∴
即
是首項(xiàng)為2,公差為4的等差數(shù)列
∴
…………5分
(Ⅲ)山學(xué)業(yè)水平測(cè)試題.files/image324.gif)
∴山學(xué)業(yè)水平測(cè)試題.files/image326.gif)
…………7分
∵
對(duì)所有
都成立 ∴
即山學(xué)業(yè)水平測(cè)試題.files/image336.gif)
故m的最小值是10 …………8分
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com