相關(guān)習(xí)題
0 87970 87978 87984 87988 87994 87996 88000 88006 88008 88014 88020 88024 88026 88030 88036 88038 88044 88048 88050 88054 88056 88060 88062 88064 88065 88066 88068 88069 88070 88072 88074 88078 88080 88084 88086 88090 88096 88098 88104 88108 88110 88114 88120 88126 88128 88134 88138 88140 88146 88150 88156 88164 266669
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
已知x,y,z均為正數(shù),

,則

的最小值是( )
A.1
B.3
C.

D.

查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
若圓x2+y2-ax-2y+1=0關(guān)于直線x-y-1=0對稱的圓的方程是x2+y2-4x+3=0,則a的值等于 .
查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
若不等式

對任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
(1)由“若a,b,c∈R,則(ab)c=a(bc)”類比“若

為三個(gè)向量,則

”;
(2)在數(shù)列{a
n}中,a
1=0,a
n+1=2a
n+2,猜想a
n=2
n-2;
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
(4)若f(x)=2cos
2x+2sinxcosx則f(

)=

.
上述四個(gè)推理中,得出的結(jié)論正確的是
.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
某房地產(chǎn)開發(fā)公司用100萬元購得一塊土地,該土地可以建造每層1000平米的樓房,樓房的每平米平均建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整幢樓房每平方米建筑費(fèi)用提高20元.已知建筑5層樓房時(shí),每平方米建筑費(fèi)用為400元,為了使該樓房每平方米的平均綜合費(fèi)用最低(綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),公司應(yīng)把樓層建成 層.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
設(shè)命題p:實(shí)數(shù)x滿足x
2-4ax+3a
2<0,其中a>0,命題q:實(shí)數(shù)x滿足

.
(Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
如圖,三角形ABC中,AC=BC=

,ABED是邊長為1的正方形,平面ABED⊥底面ABC,若G、F分別是EC、BD的中點(diǎn).
(Ⅰ)求證:GF∥底面ABC;
(Ⅱ)求證:AC⊥平面EBC;
(Ⅲ)求幾何體ADEBC的體積V.

查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
如圖,平面直角坐標(biāo)系xOy中,△AOB和△COD為兩等腰直角三角形,A(-2,0),C(a,0)(a>0).設(shè)△AOB和△COD的外接圓圓心分別為M,N.
(1)若⊙M與直線CD相切,求直線CD的方程;
(2)若直線AB截⊙N所得弦長為4,求⊙N的標(biāo)準(zhǔn)方程;
(3)是否存在這樣的⊙N,使得⊙N上有且只有三個(gè)點(diǎn)到直線AB的距離為

?若存在,求此時(shí)⊙N的標(biāo)準(zhǔn)方程;若不存在,說明理由.

查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
某化工集團(tuán)在靠近某河流修建兩個(gè)化工廠,流經(jīng)第一化工廠的河流流量為500萬立方米/天,在兩個(gè)化工廠之間還有一條流量為200萬立方米/天的支流并入大河(如圖).第一化工廠每天排放含有某種有害物質(zhì)的工業(yè)廢水2萬立方米;第二化工廠每天排放這種工業(yè)廢水1.4萬立方米,從第一化工廠排出的工業(yè)廢水在流到第二化工廠之前,有20%可自然凈化.
環(huán)保要求:河流中工業(yè)廢水的含量應(yīng)不大于0.2%,因此,這兩個(gè)工廠都需各自處理部分的工業(yè)廢水,第一化工廠處理工業(yè)廢水的成本是1000元/萬立方米,第二化工廠處理工業(yè)廢水的成本是800元/萬立方米.
試問:在滿足環(huán)保要求的條件下,兩個(gè)化工廠應(yīng)各自處理多少工業(yè)廢水,才能使這兩個(gè)工廠總的工業(yè)廢水處理費(fèi)用最小?

查看答案和解析>>
科目:
來源:2011-2012學(xué)年遼寧省沈陽二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知集合D={(x
1,x
2)|x
1>0,x
2>0,x
1+x
2=k}(其中k為正常數(shù)).
(1)設(shè)u=x
1x
2,求u的取值范圍;
(2)求證:當(dāng)k≥1時(shí)不等式

對任意(x
1,x
2)∈D恒成立;
(3)求使不等式

對任意(x
1,x
2)∈D恒成立的k
2的范圍.
查看答案和解析>>