相關(guān)習(xí)題
0 87507 87515 87521 87525 87531 87533 87537 87543 87545 87551 87557 87561 87563 87567 87573 87575 87581 87585 87587 87591 87593 87597 87599 87601 87602 87603 87605 87606 87607 87609 87611 87615 87617 87621 87623 87627 87633 87635 87641 87645 87647 87651 87657 87663 87665 87671 87675 87677 87683 87687 87693 87701 266669
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-2)= .
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
設(shè)f(x)=
.
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a= .
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:填空題
設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)t使得對于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),則稱f(x)為M上的t高調(diào)函數(shù).如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是 .如果定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時,

(x∈R).
(1)當(dāng)x∈(0,1]時,求f(x)的解析式;
(2)若a>-1,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
某企業(yè)2003年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降.若不能進行技術(shù)改造,預(yù)測從今年起每年比上一年純利潤減少20萬元,今年初該企業(yè)一次性投入資金600萬元進行技術(shù)改造,預(yù)測在未扣除技術(shù)改造資金的情況下,第n年(今年為第一年)的利潤為500(1+

)萬元(n為正整數(shù)).
(Ⅰ)設(shè)從今年起的前n年,若該企業(yè)不進行技術(shù)改造的累計純利潤為A
n萬元,進行技術(shù)改造后的累計純利潤為B
n萬元(須扣除技術(shù)改造資金),求A
n、B
n的表達式;
(Ⅱ)依上述預(yù)測,從今年起該企業(yè)至少經(jīng)過多少年,進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤?
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知定義域為R的函數(shù)f(x)=

是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)解關(guān)于t的不等式f(t
2-2t)+f(2t
2-1)<0.
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出場單價就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過600件.
(1)設(shè)一次訂購x件,服裝的實際出廠單價為p元,寫出函數(shù)p=f(x)的表達式;
(2)當(dāng)銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知:函數(shù)f(x)=ax+

+c(a、b、c是常數(shù))是奇函數(shù),且滿足f(1)=

,f(2)=

,
(Ⅰ)求a、b、c的值;
(Ⅱ)試判斷函數(shù)f(x)在區(qū)間(0,

)上的單調(diào)性并說明理由;
(Ⅲ)試求函數(shù)f(x)在區(qū)間(0,+∞)上的最小值.
查看答案和解析>>
科目:
來源:2012-2013學(xué)年貴州省黔西南州普安一中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實常數(shù)a的取值范圍;
(2)設(shè)g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=f(x),求g(x)的解析式.
查看答案和解析>>