科目: 來源: 題型:
【題目】如圖,在三棱錐
中,頂點
在底面
上的射影
在棱
上,
,
,
,
為
的中點。
![]()
(Ⅰ)求證:
(Ⅱ)求二面角
的余弦值;
(Ⅲ)已知
是平面
內(nèi)一點,點
為
中點,且
平面
,求線段
的長。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(I)若曲線
存在斜率為-1的切線,求實數(shù)a的取值范圍;
(II)求
的單調(diào)區(qū)間;
(III)設(shè)函數(shù)
,求證:當
時,
在
上存在極小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟的巨大發(fā)展,據(jù)統(tǒng)計,在2018年這一年內(nèi)從A市到B市乘坐高鐵或飛機出行的成年人約為50萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機抽取100人次作為樣本.得到下表(單位:人次):
![]()
(1)在樣本中任取1個,求這個出行人恰好不是青年人的概率;
(2)在2018年從A市到B市乘坐高鐵的所有成年人中,隨機選取2人次,記其中老年人出行的人次為X.以頻率作為概率.求X的分布列和數(shù)學期望;
(3)如果甲將要從A市出發(fā)到B市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是 飛機?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐S—ABCD中,底面ABCD為長方形,SB⊥底面ABCD,其中BS=2,BA=2,BC=λ,λ的可能取值為:①
;②
;③
;④
;⑤λ=3
![]()
(1)求直線AS與平面ABCD所成角的正弦值;
(2)若線段CD上能找到點E,滿足AE⊥SE,則λ可能的取值有幾種情況?請說明理由;
(3)在(2)的條件下,當λ為所有可能情況的最大值時,線段CD上滿足AE⊥SE的點有兩個,分別記為E1,E2,求二面角E1-SB-E2的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】給定橢圓C:
(
),稱圓心在原點O,半徑為
的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率
,點
在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線
,
使得![]()
![]()
,與橢圓C都只有一個交點,且
,
分別交其“衛(wèi)星圓”于點M,N,證明:弦長
為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知菱形ABCD中,∠BAD=60°,AC與BD相交于點O.將△ABD沿BD折起,使頂點A至點M,在折起的過程中,下列結(jié)論正確的是( )
A.BD⊥CM
B.存在一個位置,使△CDM為等邊三角形
C.DM與BC不可能垂直
D.直線DM與平面BCD所成的角的最大值為60°
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線
的左、右兩個頂點分別是A1,A2,左、右兩個焦點分別是F1,F2,P是雙曲線上異于A1,A2的任意一點,給出下列命題,其中是真命題的有( )
A.![]()
B.直線
的斜率之積等于定值![]()
C.使得
為等腰三角形的點
有且僅有8個
D.
的面積為![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。
![]()
A. 這15天日平均溫度的極差為![]()
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于![]()
D. 由折線圖能預(yù)測本月溫度小于
的天數(shù)少于溫度大于
的天數(shù)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com